Review
Open Access
Polymicellar-based drug delivery systems for use in nanodentistry, oral and cranio-maxillo-facial oncology
1 BioMAT’X (HAiDAR I+D+i LAB), Santiago, Chile
2 Clínica/Hospital Universidad de los Andes, Santiago, Chile
3 Facultad de Odontología, Universidad de los Andes, Santiago, Chile
4 Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
5 Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
Abstract

Polymer-based therapeutics is a precipitously-growing Research, Developmentand Innovation (R&D&I) translational field of bioengineering for biomedicine. The last decade has witnessed an exponential rise in interest from Dentistry, in general and Oral Oncology (extending to cranio-maxillo-facial), in particular. Basically, the area comprises the design, development, characterization, evaluation and fine-tuning (refinement) of polymer-drug and polymer-protein conjugates, macromolecular drug delivery systems, and polymeric micelles that incorporate covalently-bound drugs, bioactive agents and polyplexes for controlled pharmaceutic and DNA delivery. Accordingly, tackling drug delivery-related issues, including mode-of-administration, encapsulation efficiency, loading capacity, release pharmaco-kinetics, bio-safety and -efficacy became key in nanomedicine and nanoDentistry of today and tomorrow. Herein, nano-sized drug delivery vehicles and carriers can represent a cornerstone in the ongoing efforts for controlled drug development, formulation, optimization and translation from bench-top to chair-side; to the clinic and our patients. Indeed, the self-assembly of amphiphilic polymers, or aggregation colloids (in solution), commonly referred to as polymeric micelles, continue to represent an invaluably desirable and pursued small-scale, easy-to formulate, -characterize and -sterilize tool in pharmaceutical innovation, mainly, in overcoming critical issues in drug delivery, including low water solubility in biological fluids and poor drug permeability across biological barriers.

Yet, challenges, related to post-administration stability and behavior (pre-clinical and clinical) for example, continue to drive the present R&D&I efforts across the World. Dentistry and Oro-Dental Health Care including Oral and Cranio-Maxillo-Facial (Surgery and) Oncology are no exception. Therefore, in this special review, a concise presentation and discussion of the past, present and future of polymer-based micelles and nano-micelles, including characterization parameters, methods of preparation, drug(s) loading/delivery and challenges, is presented, via integrating illustrations of pertinent a range of uses and applications, in an attempt to bridge the gap between biomaterial engineering, pharmaceutics, nano-biotechnology, innovative clinical translation and the curious junior/senior investigator.

Keywords

dentistry; biofilm; oral cancer; chemotherapy; drug delivery; dental caries; tooth-binding; micelle; nanomaterials; polymer; oncology

Preview
References
  • [1] Kim S, Shi Y, Kim JY, Park K, Cheng JX. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle-cell interaction. Expert Opin Drug Deliv 2010, 7(1): 49-62.
  • [2] Yousefpour MM, Yari KA. Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol 2017, 79(4): 637-649.
  • [3] Batrakova EV, Bronich TK, Vetro JA. Nanoparticulates as Drug Carriers. Imperial College Press, London 2010. doi:10.1142/9781860949074
  • [4] Torchilin VP. Micellar nanocarriers: Pharmaceutical perspectives. Pharm Res 2007, 24(1): 1-16.
  • [5] Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv 2006, 3(1): 139-162.
  • [6] Yokoyama M. Clinical Applications of Polymeric Micelle Carrier Systems in Chemotherapy and Image Diagnosis of Solid Tumors. J Exp Clin Med 2011, 3(4): 151-158.
  • [7] Nagarajan R. One Hundred Years of Micelles: Evolution of the Theory of Micellization. Surfactant Sci Technol 2014, (January 2014): 32-81.
  • [8] Shota Fujii RT and KS. Platonic micelles : A new concept of micelles since their discovery 100 years ago. Res Front 2017, 2:76-77.
  • [9] Hoeve CAJ, Benson GC. On the Statistical Mechanical Theory of Micelle Formation in Detergent Solutions. J Phys Chem 1957, 61(9): 1149-1158.
  • [10] Poland DC, Scheraga HA. Hydrophobic bonding and micelle stability. J Phys Chem 1965, 69(7): 2431-2442.
  • [11] Xu W, Ling P, Zhang T. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs. J Drug Deliv 2013, 2013(1): 1-15.
  • [12] van Gaal EVB, Crommelin DJA. Polymeric micelles. AAPS Adv Pharm Sci Ser 2015, 20: 11-76.
  • [13] Deshmukh AS, Chauhan PN, Noolvi MN, et al. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017, 532(1): 249-268.
  • [14] Wakaskar RR. Polymeric Micelles and their Properties. J Nanomed Nanotechnol 2017, 8:2.
  • [15] Ghezzi M, Pescina S, Padula C, et al. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021, 332(February): 312-336.
  • [16] Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013, 453(1): 198-214.
  • [17] Majumder N, Das NG, Das SK. Polymeric micelles for anticancer drug delivery. Ther Deliv 2020, 11(10): 613-635.
  • [18] Manjappa AS, Kumbhar PS, Patil AB, Disouza JI, Patravale VB. Polymeric mixed micelles: Improving the anticancer efficacy of single-copolymer micelles. Crit Rev Ther Drug Carrier Syst 2019, 36(1): 1-58.
  • [19] Yokoyama M. Polymeric micelles as drug carriers: Their lights and shadows. J Drug Target 2014, 22(7): 576-583.
  • [20] Khan S, Vahdani Y, Hussain A, et al. Polymeric micelles functionalized with cell penetrating peptides as potential pH-sensitive platforms in drug delivery for cancer therapy: A review. Arab J Chem 2021, 14(8): 103264.
  • [21] Kulthe SS, Choudhari YM, Inamdar NN, Mourya V. Polymeric micelles: Authoritative aspects for drug delivery. Des Monomers Polym 2012, 15(5): 465-5
  • [22] Sisido M. Encyclopedia of Polymeric Nanomaterials (Kobayashi S, Müllen K, eds.). Springer Berlin Heidelberg 2015.
  • [23] Movassaghian S, Merkel OM, Torchilin VP. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 2015, 7(5): 691-707.
  • [24] Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017, 113(2017): 211-228.
  • [25] Lorenzo CA, Concheiro A, Sosnik A. Micelas poliméricas para encapsulación, vectorización y cesión de fármacos. In: Biomateriais Aplicados Ao Desenvolvimento de Sistemas Terapêuticos Avançados. Imprensa da Universidade de Coimbra 2020:183-217.
  • [26] Simões SMN, Figueiras AR, Veiga F, Concheiro A, Alvarez-Lorenzo C. Polymeric micelles for oral drug administration enabling locoregional and systemic treatments. Expert Opin Drug Deliv 2015, 12(2): 297-318.
  • [27] Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric micelles: General considerations and their applications. Indian J Pharm Educ Res 2011, 45(2): 128-138.
  • [28] Atanase LI. Micellar drug delivery systems based on natural biopolymers. Polymers (Basel) 2021, 13(3):1-33.
  • [29] Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm 2017, 113(2017): 211-228.
  • [30] Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006, 112(3): 630-648.
  • [31] Donlan, RM. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis 2002, 8(9): 881-890.
  • [32] Øilo, Marit, and Vidar Bakken. Biofilm and Dental Biomaterials. Materials 2015, 8(6): 2887-2900.
  • [33] Yi Y, Wang L, Chen L et al. Farnesal-loaded pH-sensitive polymeric micelles provided effective prevention and treatment on dental caries. J. Nanobiotechnology 2020, 18: 89.
  • [34] Zhang M, Yu Z, Lo ECM. A New pH-Responsive Nano Micelle for Enhancing the Effect of a Hydrophobic Bactericidal Agent on Mature Streptococcus mutans. Biofilm. Front. Microbiol 2021, 12: 761583.
  • [35] Dantas Lopes Dos Santos D, Besegato JF, de Melo PBG, Oshiro Junior JA, Chorilli M, Deng D, Bagnato VS, Rastelli ANS. Curcumin-loaded Pluronic® F-127 Micelles as a Drug Delivery System for Curcumin-mediated Photodynamic Therapy for Oral Application. Photochem Photobiol 2021, 97(5): 1072-1088.
  • [36] Chen F, Liu XM, Rice KC, Li X, Yu F, Reinhardt RA, Bayles KW, Wang D. Tooth-binding micelles for dental caries prevention. Antimicrob Agents Chemother 2009, 53(11): 4898-902.
  • [37] Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol 2012, 114(3): e25-34.
  • [38] Rong XY, Xie YH, Hao XM, Chen T, Wang YM, Liu YY. Applications of polymeric nanocapsules in field of drug delivery systems. Curr. Drug Discov. Technol. 2011, 8(3): 173-87.
  • [39] Pasut G, Veronese FM. Polymer-drug conjugation, recent achievements and general strategies. Prog Polym Sci 2007, 32: 933–961.
  • [40] Haidar ZS. Bio-inspired/-functional colloidal core-shell polymeric-based nanosystems: technology promise in tissue engineering, bioimaging and nanomedicine. Polymers 2010, 2(3): 323-352.
  • [41] Parra M, Moya MP, Rebolledo C, Haidar ZS, Alister, JP, Olate S. PLA/PGA and its co-polymers in alveolar bone regeneration. A systematic review. Int. j. odontostomatol 2019, 13(3): 258-265.
  • [42] Cristina R, Eleonora P, Vittoria R, Alfred C. Nano-Oncology: Clinical Application for Cancer Therapy and Future Perspectives. J. Nanomater 2011.
  • [43] Fan W, Wei Q, Xiang J, Tang Y, Zhou Q, Geng Y, Liu Y, Sun R, Xu L, Wang G, Piao Y, Shao S, Zhou Z, Tang J, Xie T, Li Z, Shen Y. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv Mater 2022, 34(16): e2109189.
  • [44] Charbe NB, Amnerkar ND, Ramesh B, Tambuwala MM, Bakshi HA, Aljabali AAA, Khadse SC, Satheeshkumar R, Satija S, Metha M, Chellappan DK, Shrivastava G, Gupta G, Negi P, Dua K, Zacconi FC. Small interfering RNA for cancer treatment: overcoming hurdles in delivery. Acta Pharm Sin B 2020, 10(11): 2075-2109.
  • [45] Gharat SA, Momin M, Bhavsar C. Oral squamous cell carcinoma: Current treatment strategies and nanotechnology-based approaches for prevention and therapy. Crit Rev Ther Drug Carrier Syst 2016, 33(4): 363-400.
  • [46] Wang ZQ, Liu K, Huo ZJ, Li XC, Wang M, Liu P, Pang B, Wang SJ. A cell-targeted chemotherapeutic nanomedicine strategy for oral squamous cell carcinoma therapy. J Nanobiotechnology 2015, 1(13): 63.
  • [47] Taneja N, Alam A, Patnaik RS, Taneja T, Gupta S, K SM. Understanding nanotechnology in the treatment of oral cancer: a comprehensive review. Crit Rev Ther Drug Carrier Syst 2021, 38(6): 1-48.
  • [48] Liu L, Chen J, Cai X, Yao Z, Huang J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg Oncol 2019, 31: 90-97.
  • [49] Solomon D, Gupta N, Mulla NS, Shukla S, Guerrero YA, Gupta V. Role of in vitro release methods in liposomal formulation development: challenges and regulatory perspective. J AAPS 2017(19): 1669–1681.
  • [50] Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021, 10(332): 312-336.
  • [51] Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008, 5(4): 496-504.
  • [52] Sosnik A, Menaker Raskin M. Polymeric micelles in mucosal drug delivery: Challenges towards clinical translation. Biotechnol Adv 2015, 33(6): 1380-1392.
  • [53] Gothwal A, Khan I, Gupta U. Polymeric Micelles: Recent Advancements in the Delivery of Anticancer Drugs. Pharm Res 2016, 33(1): 18-39.
  • [54] Grumezescu AM, Dumitru A, Jinga SI. Advanced nano- and bio-materials: A pharmaceutical approach. Int J Pharm 2016, 510(2): 407-8.
  • [55] Zhou J, Kroll AV, Holay M, Fang RH, Zhang L. Biomimetic Nanotechnology toward Personalized Vaccines. Adv Mater 2020, 32(13): e19012