Article
Open Access
Expand
3D Printed tandem X-Ray detector with halide perovskite-polymer composite semiconductor absorber
1 Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Tallahassee FL 32310, USA
2 High-Performance Materials Institute, Florida State University, Tallahassee FL 32310, USA
3 Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee FL 32310, USA
4 National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
  • Volume
  • Citation
    Li H, Shan X, Bao S, Psulkowski S, Guo W, et al. 3D Printed tandem X-Ray detector with halide perovskite-polymer composite semiconductor absorber. Adv. Manuf. 2024(1):0002, https://doi.org/10.55092/am20230002. 
  • DOI
    10.55092/am20230002
  • Copyright
    Copyright2023 by the authors. Published by ELSP.
Abstract

A semiconductor-polymer composite was developed in this work consisting of inorganic halide perovskite (CsPbBr3) crystals embedded in polylactic acid (PLA) matrix. The composite exhibits the essential semiconductor properties of CsPbBr3 and the easy processability of PLA, enabling 3D printed tandem X-ray detectors. The tandem detectors demonstrated a sensitivity of 383 μC Gyair-1 cm-2 when four layers and total 600 µm thick CsPbBr3-PLA were printed. This sensitivity is 23X of single-layer detectors with same absorber thickness. The result indicates that 3D printed tandem detectors can overcome the X-ray absorption vs. charge carrier collection tradeoff in conventional single-layer detectors towards high performance radiation detection.

Keywords

3D print; X-ray detector; halide perovskite; composite; tandem

Preview
References
  • [1] Yaffe MJ, Rowlands JA. X-ray detectors for digital radiography. Phys Med Biol 1997, 42(1):1-39.
  • [2] Kim BJ, Cha BK, Jeon H, Chi YK, Cho G. A study on spatial resolution of pixelated CsI(Tl) scintillator. Nucl Instrum Meth A 2007, 579(1):205-207.
  • [3] Que W, Rowlands JA. X-Ray-Imaging using amorphous selenium - inherent spatial-resolution. Med Phys 1995, 22(4):365-374.
  • [4] Strassburg M, Schroeter C, Hackenschmied P. CdTe/CZT under high flux irradiation. J Instrum 2011, 6:C01055.
  • [5] Redus R, Huber A, Pantazis J, Pantazis T, Takahashi T, et al. Multielement CdTe stack detectors for gamma-ray spectroscopy. IEEE T Nucl Sci 2004, 51(5):2386-2394.
  • [6] Del Sordo S, Abbene L, Caroli E, Mancini AM, Zappettini A, et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors-Basel 2009, 9(5):3491-352
  • [7] Farahmandzadeh M, Marcinko S, Jaramillo C, Cheng MK, Curreli D, et al. Simulation and experimental validation of the uniformity of thermally evaporated amorphous selenium films for large-area imaging and radiation detection applications. IEEE T Electron Dev 2021, 68(2):626-631.
  • [8] Wei HT, Huang JS. Halide lead perovskites for ionizing radiation detection. Nat Commun 2019, 10:1066.
  • [9] Stranks SD, Snaith HJ. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nanotechnol 2015, 10(5):391-402.
  • [10] Li JQ, Bade SGR, Shan X, Yu ZB. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater 2015, 27(35):5196-5202.
  • [11] Bade SGR, Li JQ, Shan X, Ling YC, Tian Y, et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano 2016, 10(2):1795-1801.
  • [12] Kim YC, Kim KH, Son DY, Jeong DN, Seo JY, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 2017, 550(7674):87-91.
  • [13] Li HR, Shan X, Neu JN, Geske T, Davis M, et al. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. J Mater Chem C 2018, 6(44):11961-11967.
  • [14] Loke G, Yuan R, Rein M, Khudiyev T, Jain Y, et al. Structured multimaterial filaments for 3D printing of optoelectronics. Nat Commun 2019, 10:4010.
  • [15] Mannino G, Deretzis I, Smecca E, La Magna A, Alberti A, et al. Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J Phys Chem Lett 2020, 11(7):2490-2496.
  • [16] Stoumpos CC, Malliakas CD, Peters JA, Liu ZF, Sebastian M, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst Growth Des 2013, 13(7):2722-2727.
  • [17] Zanichelli M, Santi A, Pavesi M, Zappettini A. Charge collection in semi-insulator radiation detectors in the presence of a linear decreasing electric field. J Phys D Appl Phys 2013, 46(36):365103.
  • [18] Qaid SMH, Ghaithan HM, Al-Asbahi BA, Aldwayyan AS. Achieving optical gain of the CsPbBr3 perovskite quantum dots and influence of the variable stripe length method. ACS Omega 2021, 6(8):5297-5309.
  • [19] Li X, Tan Y, Lai H, Li SP, Chen Y, et al. All-inorganic CsPbBr3 perovskite solar cells with 10.45% efficiency by evaporation-assisted deposition and setting intermediate energy levels. ACS Appl Mater Inter 2019, 11(33):29746-29752.
  • [20] Tchernycheva M, Neplokh V, Zhang H, Lavenus P, Rigutti L, et al. Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping. Nanoscale 2015, 7(27):11692-11701.
  • [21] Barrasa JO, Ferrandez-Montero A, Ferrari B, Pastor JY. Characterisation and modelling of PLA filaments and evolution with time. Polymers-Basel 2021, 13(17):2899.
  • [22] Bruzzi M, Talamonti C. Characterization of crystalline CsPbBr3 perovksite dosimeters for clinical radiotherapy. Front Phys-Lausanne 2021, 9:625282.
  • [23] Photon cross section database now available on-line. J Res Natl Inst Stan 1998, 103(2):249-249.
  • [24] Datta A, Zhong Z, Motakef S. A new generation of direct X-ray detectors for medical and synchrotron imaging applications. Sci Rep-Uk 2020, 10(1):20097.
  • [25] He YH, Hadar I, De Siena MC, Klepov VV, Pan L, et al. Sensitivity and detection limit of spectroscopic-grade perovskite CsPbBr3 crystal for hard X-Ray detection. Adv Funct Mater 2022, 32(24):21129
  • [26] Shao YH, Xiao ZG, Bi C, Yuan YB, Huang JS. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 2014, 5:5784.
  • [27] Pothoof J, Westbrook RJE, Giridharagopal R, Breshears MD, Ginger DS. Surface passivation suppresses local ion motion in halide perovskites. J Phys Chem Lett 2023, 14(26):6092-6098.