Review
Open Access
Therapeutic potential of plant-derived amiRNAs: challenges and strategies
State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, 163 Xianlin Ave, Nanjing, Jiangsu 210023, China
Abstract

Small RNAs (sRNAs) are potent and accurate genetic regulators capable of targeting a diverse range of genes in eukaryotes. In recent years, the sRNA-based RNA interference (RNAi) technique has emerged as a promising strategy for modifying pathological processes by targeting specific genes or gene families, thereby promoting RNAi-based precise medical therapy. Notably, plant-derived miRNAs have shown promise in the treatment of various disorders, including cancer, neurodegenerative diseases, and infectious diseases. This review examines the therapeutic potential of plant-derived natural miRNAs and artificial miRNAs (amiRNAs), especially sourced from edible plants like crops and herbs. In addition, we discuss the challenges and strategies of utilizing amiRNAs in the therapeutic application and highlight the essential factors for effectively producing desired miRNA mimics in plants.

Keywords

artificial miRNAs; RNAi therapy; sRNA drugs; plant; oral administration; cross-kingdom regulation

Preview
References
  • [1]Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391(6669): 806–81
  • [2]Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009, 136(4): 642–655.
  • [3]Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat. Rev. Mol. Cell Biol. 2022, 23(3): 185–20
  • [4]Liu H, Lei C, He Q, Pan Z, Xiao D, et al. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol. Cancer 2018, 17(1): 6
  • [5]Almeida R, Allshire RC. RNA silencing and genome regulation. Trends Cell Biol 2005, 15(5): 251–258.
  • [6]Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009, 19(1): 92–105.
  • [7]Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20(1): 21–3
  • [8]Chitwood DH, Timmermans MC. Small RNAs are on the move. Nature 2010, 467(7314): 415–419.
  • [9]Zhang L, Hou D, Chen X, Li D, Zhu L, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012, 22(1): 107–126.
  • [10]Kim G, LeBlanc ML, Wafula EK, DePamphilis CW, Westwood JH. Genomic-scale exchange of mRNA between a parasitic plant and its hosts. Science 2014, 345(6198): 808–811.
  • [11]Shahid S, Kim G, Johnson NR, Wafula E, Wang F, et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 2018, 553(7686): 82–85.
  • [12]Zhu K, Liu M, Fu Z, Zhou Z, Kong Y, et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet. 2017, 13(8): e1006946.
  • [13]Betti F, Ladera-Carmona MJ, Weits DA, Ferri G, Iacopino S, et al. Exogenous miRNAs induce post-transcriptional gene silencing in plants. Nat. Plants 2021, 7(10):1379–1388.
  • [14]Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 2013, 342(6154): 118–123.
  • [15]Cai Q, Qiao L, Wang M, He B, Lin FM, et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 2018, 360(6393):1126–1129.
  • [16]Zhang J, Li S, Li L, Li M, Guo C, et al. Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function. Genom. Proteom. Bioinf. 2015, 13(1): 17–24.
  • [17]Cui J, Shu J. Circulating microRNA trafficking and regulation: computational principles and practice. Brief. Bioinform. 2020, 21(4): 1313–1326.
  • [18]Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat. Rev. Mol. Cell Biol. 2022, 23(3):185–203.
  • [19]Wong-Bajracharya J, Singan VR, Monti R, Plett KL, Ng V, et al. The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis. Proc. Natl. Acad. Sci. U.S.A. 2022. 119(3): e21035271
  • [20]Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16(3):203–222.
  • [21]Hosseinahli N, Aghapour M, Duijf PH, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J. Cel. Physiol. 2018, 233(8): 5574–5588.
  • [22]Dávalos A, Pinilla L, de Las Hazas MC, Pinto-Hernández P, Barbé F, et al. Dietary microRNAs and cancer: A new therapeutic approach? Semin. Cancer Biol. 2021, 73: 19–29.
  • [23]Liang G, Zhu Y, Sun B, Shao Y, Jing A, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci. Nutr. 2014, 2(4): 380–388.
  • [24]Luo Y, Wang P, Wang X, Wang Y, Mu Z, et al. Detection of dietetically absorbed maize-derived microRNAs in pigs. Sci. Rep. 2017, 7(1): 645.
  • [25]Li Y, Li W, Fu C, Song Y, Fu Q. Lonicerae japonicae flos and Lonicerae flos: a systematic review of ethnopharmacology, phytochemistry and pharmacology. Phytochem. Rev. 2019, 19: 1–61.
  • [26]Zhou Z, Li X, Liu J, Dong L, Chen Q, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015, 25(1): 39–49.
  • [27]Zhou LK, Zhou Z, Jiang XM, Zheng Y, Chen X, et al. Absorbed plant MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the negative conversion of infected patients. Cell Discov. 2020. 6(1): 54.
  • [28]Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016, 26(2): 217–2
  • [29]Hou D, He F, Ma L, Cao M, Zhou Z, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J. Nutr. Biochem. 2018, 57: 197–205.
  • [30]Zhang S, Sang X, Hou D, Chen J, Gu H, et al. Plant-derived RNAi therapeutics: A strategic inhibitor of HBsAg. Biomaterials 2019, 210: 83–93.
  • [31]Li D, Yang J, Liu J, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front. Genet. 2021, 12: 613197.
  • [32]Chen Q, Zhang F, Dong L, Wu H, Xu J. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell Res. 2021, 31(3): 247–258.
  • [33]Zheng L, Yang T, Guo H, Qi C, Lu Y, et al. Cryo-EM structures of human SID-1 transmembrane family proteins and implications for their low-pH-dependent RNA transport activity. Cell Res. 2024, 34(1):80–83.
  • [34]Kotowska-Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip. Rev. RNA 2021, 12(4): e1640.
  • [35]Cisneros AE, Carbonell A. Artificial Small RNA-Based Silencing Tools for Antiviral Resistance in Plants. Plants (Basel) 2020. 9(6):669.
  • [36]Zhang B, Wang Q. MicroRNA-based biotechnology for plant improvement. J. Cell Physiol. 2015, 230(1): 1–15.
  • [37]Wyrzykowska A, Pieczynski M, Szweykowska-Kulinska Z. Construction of Artificial miRNAs to Prevent Drought Stress in Solanum tuberosum. Methods Mol. Biol. 2016, 1398: 271–290.
  • [38]Cisneros AE, de la Torre-Montaña A, Carbonell A. Systemic silencing of an endogenous plant gene by two classes of mobile 21-nucleotide artificial small RNAs. Plant J. 2022, 110(4): 1166–1181.
  • [39]Yogindran S, Rajam MV. Host-derived artificial miRNA-mediated silencing of ecdysone receptor gene provides enhanced resistance to Helicoverpa armigera in tomato. Genomics 2021, 113(1): 736–747.
  • [40]Xie Q, Yu Q, Jobe TO, Pham A, Ge C, et al. An amiRNA screen uncovers redundant CBF and ERF34/35 transcription factors that differentially regulate arsenite and cadmium responses. Plant Cell Environ. 2021, 44(5): 1692–1706.
  • [41]Zand Karimi H, Innes RW. Molecular mechanisms underlying host-induced gene silencing. Plant Cell 2022. 34(9): 3183–3199.
  • [42]Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 2006, 24(11): 1420–1428.
  • [43]Zhang Y, Nasser V, Pisanty O, Omary M, Wulff N, et al. A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat. Commun. 2018, 9(1): 4204.
  • [44]More P, Agarwal P, Anand A, Sanan-Mishra N, Agarwal PK. Artificial miRNA mediated resistance in tobacco against Jatropha leaf curl Gujarat virus by targeting RNA silencing suppressors. Sci Rep 2021, 11(1): 890.
  • [45]Gu Z, Huang C, Li F, Zhou X. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol. J. 2014, 12(5): 638–649.
  • [46]Pfister EL, Chase KO, Sun H, Kennington LA, Conroy F, et al. Safe and Efficient Silencing with a Pol II, but Not a Pol lII, Promoter Expressing an Artificial miRNA Targeting Human Huntingtin. Mol. Ther. Nucleic Acids 2017, 7: 324–334.
  • [47]Kotowska-Zimmer A, Przybyl L, Pewinska M, Suszynska-Zajczyk J, Wronka D, et al. A CAG repeat-targeting artificial miRNA lowers the mutant huntingtin level in the YAC128 model of Huntington's disease. Mol. Ther. Nucleic Acids 2022, 28: 702–715.
  • [48]Cuciniello R, Filosa S, Crispi S. Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics. J. Exp. Clin. Cancer Res. 2021, 40(1): 383.
  • [49]Wedge ME, Jennings VA, Crupi MJ, Poutou J, Jamieson T, et al. Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy. Nat. Commun. 2022, 13(1): 1898.
  • [50]Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum. Gene. Ther. 2019, 30(2): 179–196.
  • [51]Saha A, Bhagyawant SS, Parida M, Dash PK. Vector-delivered artificial miRNA effectively inhibited replication of Chikungunya virus. Antiviral Res. 2016, 134: 42–49.
  • [52]Wen K, Wang H, Chen Y, Yang H, Zheng Z, et al. A new self-attenuated therapeutic influenza vaccine that uses host cell-restricted attenuation by artificial microRNAs. Int. J. Pharm. 2022, 612: 121325.
  • [53]Brusson M, Chalumeau A, Martinucci P, Romano O, Felix T, et al. Novel lentiviral vectors for gene therapy of sickle cell disease combining gene addition and gene silencing strategies. Mol. Ther. Nucleic Acids 2023, 32: 229–246.
  • [54]Mao Y, Wang X, Hu W, Li A, Li Y, et al. Long-term and efficient inhibition of hepatitis B virus replication by AAV8-delivered artificial microRNAs. Antiviral Res. 2022, 204: 105366.
  • [55]Huang J, Mei H, Tang Z, Li J, Zhang X, et al. Triple-amiRNA VEGFRs inhibition in pancreatic cancer improves the efficacy of chemotherapy through EMT regulation. J. Control. Release 2017. 245: 1–14.
  • [56]Acunzo M, Romano G, Nigita G, Veneziano D, Fattore L, et al. Selective targeting of point-mutated KRAS through artificial microRNAs. Proc. Natl. Acad. Sci. U.S.A. 2017, 114(21): e4203-e4212.
  • [57]Sharma AK, Sharma MK. Plants as bioreactors: recent developments and emerging opportunities. Biotechnol. Adv. 2009, 27(6): 811–832.
  • [58]Yao J, Weng Y, Dickey A, Wang KY. Plants as factories for human pharmaceuticals: applications and challenges. Int. J. Mol. Sci. 2015, 16(12): 28549–28565.
  • [59]Mirzaee M, Osmani Z, Frébortová J, Frébort I. Recent advances in molecular farming using monocot plants. Biotechnol. Adv. 2022, 58: 107913.
  • [60]Long Y, Wei X, Wu S, Wu N, Li QX, et al. Plant molecular farming, a tool for functional food production. J. Agric. Food Chem. 2022. 70(7): 2108–2116.
  • [61]Fausther-Bovendo H, Kobinger G. Plant-made vaccines and therapeutics. Science 2021, 373(6556): 740–741.
  • [62]Wang X, Ren X, Ning L, Wang P, Xu K, et al. Stability and absorption mechanism of typical plant miRNAs in an in vitro gastrointestinal environment: basis for their cross-kingdom nutritional effects. J. Nutr. Biochem. 2020, 81: 108376.
  • [63]Wang Y, Peng M, Wang W, Chen Y, He Z, et al. Verification of miRNAs in ginseng decoction by high-throughput sequencing and quantitative real-time PCR. Heliyon 2019, 5(4): e01418.
  • [64]Mlotshwa S, Pruss GJ, MacArthur JL, Endres MW, Davis C, et al. A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res. 2015, 25(4): 521–524.
  • [65]Huang H, Roh J, Davis CD, Wang TT, et al. An improved method to quantitate mature plant microRNA in biological matrices using modified periodate treatment and inclusion of internal controls. PLoS One 2017, 12(4): e0175429.
  • [66]Xie W, Melzig MF. The Stability of Medicinal Plant microRNAs in the Herb Preparation Process. Molecules 2018, 23(4): 919.
  • [67]He B, Cai Q, Qiao L, Huang CY, Wang S, et al. RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nat. Plants 2021, 7(3): 342–352.
  • [68]Rome S. Biological properties of plant-derived extracellular vesicles. Food Funct. 2019, 10(2): 529–538.
  • [69]Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27(4): 710–728.
  • [70]Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13(4): 423–433.
  • [71]Kowalski PS, Rudra A, Miao L, Anderson DG, et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 2004, 22(3): 326–330.
  • [72]Narjala A, Nair A, Tirumalai V, Hari Sundar GV, Shivaprasad PV. A conserved sequence signature is essential for robust plant miRNA biogenesis. Nucleic Acids Res. 2020, 48(6): 3103–3118.
  • [73]Pei Y, Tuschl T. On the art of identifying effective and specific siRNAs. Nat. Methods 2006, 3(9): 670–676.
  • [74]Iki T. Messages on small RNA duplexes in plants. J. Plant Res. 2017, 130(1): 7–16.
  • [75]Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM. The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 2009, 15(12): 2219–2235.
  • [76]Mi S, Cai T, Hu Y, Chen Y, Hodges E. Sorting of Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5′ Terminal Nucleotide. Cell 2008, 133(1): 116–127.
  • [77]Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y. The Mechanism Selecting the Guide Strand from Small RNA Duplexes is Different Among Argonaute Proteins. Plant Cell Physiol. 2008, 49(4): 493–500.
  • [78]Chipman LB, Pasquinelli AE. miRNA Targeting: Growing beyond the Seed. Trends Genet. 2019, 35(3): 215–222.
  • [79]Bartel DP. Metazoan MicroRNAs. Cell 2018, 173(1): 20–51.
  • [80]Schirle NT, Sheu-Gruttadauria J, MacRae IJ. Structural basis for microRNA targeting. Science 2014, 346(6209): 608–613.
  • [81]Yan Y, Acevedo M, Mignacca L, Desjardins P, Scott N, et al. The sequence features that define efficient and specific hAGO2-dependent miRNA silencing guides. Nucleic Acids Res. 2018, 46(16): 8181–8196.
  • [82]Teotia S, Wang X, Zhou N, Wang M, Liu H, et al. A high-efficiency gene silencing in plants using two-hit asymmetrical artificial MicroRNAs. Plant Biotechnol. J. 2023, 21(9): 1799–1811.
  • [83]Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. U.S.A. 2004, 101(34): 12753–12758.
  • [84]Yang SW, Chen HY, Yang J, Machida S, Chua NH, et al. Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 2010, 18(5): 594–605.
  • [85]Wei X, Ke H, Wen A, Gao B, Shi J, et al. Structural basis of microRNA processing by Dicer-like 1. Nat. Plants 2021, 7(10): 1389–1396.
  • [86]Zhu H, Zhou Y, Castillo-González C, Lu A, Ge C, et al. Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat. Struct. Mol. Biol. 2013, 20(9): 1106–1115.
  • [87]Galka-Marciniak P, Olejniczak M, Starega-Roslan J, Szczesniak MW, Makalowska I, et al. siRNA release from pri-miRNA scaffolds is controlled by the sequence and structure of RNA. Biochim. Biophys. Acta Gene Regul. Mech. 2016, 1859(4): 639–649.
  • [88]Bofill-De Ros X, Kasprzak WK, Bhandari Y, Fan L, Cavanaugh Q, et al. Structural Differences between Pri-miRNA Paralogs Promote Alternative Drosha Cleavage and Expand Target Repertoires. Cell Rep. 2019, 26(2): 447-459.
  • [89]Bofill-De Ros X, Gu S. Guidelines for the optimal design of miRNA-based shRNAs. Methods 2016, 103: 157–166.
  • [90]Nguyen TL, Nguyen TD, Bao S, Li S, Nguyen TA. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human Microprocessor. Nucleic Acids Res. 2020, 48(5): 2579–2593.
  • [91]Roden C, Gaillard J, Kanoria S, Rennie W, Barish S, et al. Novel determinants of mammalian primary microRNA processing revealed by systematic evaluation of hairpin-containing transcripts and human genetic variation. Genome Res. 2017, 27(3): 374–384.
  • [92]Auyeung VC, Ulitsky I, McGeary SE, Bartel DP. Beyond Secondary Structure: Primary-Sequence Determinants License Pri-miRNA Hairpins for Processing. Cell 2013, 152(4): 844–858.
  • [93]Zhang H, Feng H, Lu X, Wang C, Yang W, et al. An asymmetric bulge enhances artificial microRNA-mediated virus resistance. Plant Biotechnol. J. 2020, 18(3): 608–610.
  • [94]Kooshapur H, Choudhury NR, Simon B, Mühlbauer M, Jussupow A, et al. Structural basis for terminal loop recognition and stimulation of pri-miRNA-18a processing by hnRNP A1. Nat. Commun. 2018, 9(1): 2479.
  • [95]Fang W, Bartel DP. The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol. Cell 2015, 60(1): 131–145.
  • [96]Carbonell A, Fahlgren N, Mitchell S, Cox Jr KL, Reilly KC, et al. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. Plant J. 2015, 82(6): 1061–1075.
  • [97]Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 2004, 18(18): 2237–2242.
  • [98]Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 2006, 18(5): 1134–1151.
  • [100]Li C, Wei J, Lin Y, Chen H. Gene silencing using the recessive rice bacterial blight resistance gene xa13 as a new paradigm in plant breeding. Plant Cell Rep. 2012, 31(5): 851–862.
  • [101]Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, et al. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol. 2014, 165(1): 15–29.
  • [102]Li Q, Canton M, Wu H, Zhang X, Zale J, et al. Efficient artificial microRNA vectors for gene silencing in citrus. Plant Cell Rep. 2021,40(12): 2449–2452.
  • [103]Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 2006, 18(5): 1121–1133.
  • [104]Liang G, He H, Li Y, Yu D. A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 2012, 235(6): 1421–1429.
  • [105]Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 2008. 53(4): 674–690.
  • [106]Fahim M, Millar AA, Wood CC, Larkin PJ. Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol. J. 2012, 10(2): 150–163.
  • [107]Guo Y, Han Y, Ma J, Wang H, Sang X, et al. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida). PLoS One 2014, 9(6): e98783.
  • [108]Ai T, Zhang L, Gao Z, Zhu CX, Guo X. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol. 2011, 13(2): 304–316.
  • [109]Shafrin F, Das SS, Sanan-Mishra N, Khan H. Artificial miRNA-mediated down-regulation of two monolignoid biosynthetic genes (C3H and F5H) cause reduction in lignin content in jute. Plant Mol. Biol. 2015. 89(4-5): 511–527.
  • [110]Diener C, Keller A, Meese E. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet. 2022, 38(6): 613–626.
  • [111]Samad AFA, Kamaroddin MF, Sajad M. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation. Adv. Nutr. 2021, 12(1): 197–211.
  • [112]Huang F, Du J, Liang Z, Xu Z, Xu J, et al. Large-scale analysis of small RNAs derived from traditional Chinese herbs in human tissues. Sci. China Life Sci. 2019, 62(3): 321–332.
  • [113]Ji C, Kriaucionis S, Kessler BM, Jiang C. From herbal small RNAs to one medicine. Sci. China Life Sci. 2019, 62(3): 285–287.
  • [114]Zhao D, Qin Y, Liu J, Tang K, Lu S, et al. Orally administered BZL-sRNA-20 oligonucleotide targeting TLR4 effectively ameliorates acute lung injury in mice. Sci. China Life Sci. 2023, 66(7): 1589–1599.
  • [115]Tang K, Wang X, Zhao Y, Li X, Jiang Z, et al. Oral administration of the herbal oligonucleotide XKC-sRNA-h3 prevents angiotensin II-induced hypertension in mice. Sci. China Life Sci. 2023, 66(10): 2370–2379.
  • [116]Qiao X, Huang F, Shi X, Deng X, Zhang C, et al. Herbal small RNAs in patients with COVID-19 linked to reduced DEG expression. Sci. China Life Sci. 2023, 66(6): 1280–1289.
  • [117]Minutolo A, Potestà M, Gismondi A, Pirrò S, Cirilli M, et al. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep. 2018, 8(1): 12413.
  • [118]Li X, Huang Y, Sun M, Ji H, Dou H, et al. Honeysuckle-encoded microRNA2911 inhibits Enterovirus 71 replication via targeting VP1 gene. Antiviral Res. 2018, 152: 117–123.
  • [119]Teng Y, Ren YI, Sayed M, Hu X, Lei C, et al. Plant-Derived Exosomal MicroRNAs Shape the Gut Microbiota. Cell Host Microbe 2018. 24(5): 637–652.
  • [120]Du J, Liang Z, Xu J, Zhao Y, Li X, et al. Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci. China Life Sci. 2019, 62(3): 309–320.
  • [121]Huang Y, Liu H, Sun X, Ding M, Tao G, et al. Honeysuckle-derived microRNA2911 directly inhibits varicella-zoster virus replication by targeting IE62 gene. J. Neurovirol. 2019, 25(4): 457–463.
  • [122]Aquilano K, Ceci V, Gismondi A, De Stefano S, Iacovelli F, et al. Adipocyte metabolism is improved by TNF receptor-targeting small RNAs identified from dried nuts. Commun. Biol. 2019, 2(1): 317.
  • [123]Li M, Chen T, He JJ, Wu JH, Luo JY, et al. Plant MIR167e-5p Inhibits Enterocyte Proliferation by Targeting β-Catenin. Cells 2019. 8(11): 1385.
  • [124]Marzano F, Caratozzolo MF, Consiglio A, Licciulli F, Sbisà E, et al. Plant miRNAs Reduce Cancer Cell Proliferation by Targeting MALAT1 and NEAT1: A Beneficial Cross-Kingdom Interaction. Front. Genet. 2020, 11: 552490.
  • [125]Zhou Z, Zhou Y, Jiang XM, Wang Y, Chen X, et al. Decreased HD-MIR2911 absorption in human subjects with the SIDT1 polymorphism fails to inhibit SARS-CoV-2 replication. Cell Discov. 2020. 6(1): 63.
  • [126]Liu J, Wang F, Song H, Weng Z, Bao Y, et al. Soybean-derived gma-miR159a alleviates colon tumorigenesis by suppressing TCF7/MYC in mice. J. Nutr. Biochem. 2021, 92: 108627.
  • [127]Qiu FS, Wang JF, Guo MY, Li XJ, Shi CY, et al. Rgl-exomiR-7972, a novel plant exosomal microRNA derived from fresh Rehmanniae Radix, ameliorated lipopolysaccharide-induced acute lung injury and gut dysbiosis. Biomed. Pharmacother. 2023. 165: 115007.
  • [128]Hwang JH, Park YS, Kim HS, Kim DH, Lee SH, et al. Yam-derived exosome-like nanovesicles stimulate osteoblast formation and prevent osteoporosis in mice. J. Control. Release 2023, 355: 184–198.