Review
Open Access
Review of techniques for future manufacturing of ordered and functional porous films: conceivable membranes for water desalination by membrane distillation processes
Research Institute on Membrane Technology-National Research Council (CNR-ITM), Via Pietro Bucci 17C, Rende (CS) 87036, Italy
  • Volume
  • Citation
    Gugliuzza AG. Review of techniques for future manufacturing of ordered and functional porous films: conceivable membranes for water desalination by membrane distillation processes. Adv. Manuf. 2024(2):0009, https://doi.org/10.55092/am20240009. 
  • DOI
    10.55092/am20240009
  • Copyright
    Copyright2024 by the authors. Published by ELSP.
Abstract

This review focuses on the fabrication of well-controlled porous films, which can work as conceivable membranes for membrane distillation (MD) processes. The latter is a greener membrane technology that finds large application in water desalination. The development of this technology on industrial size is however limited by the lack on the market of membranes with suitable morphological and physicochemical features, which are necessary to keep stable and durable interfacial area at the entrance of each single pore, provide resistance to wetting and fouling phenomena and amplify productivity-efficiency trade-offs. Fundamentals of MD technology and basic concepts about needed membrane morphology and surface properties are introduced. An overview on breakthrough manufacturing approaches to get high degree of structural order in membranes is provided. Descriptive analysis of each single technique is given together with a discussion about the effects of operating conditions on final morphological properties of the films. Among the various techniques, a special focus is dedicated to micromoulding phase separation, block copolymer self-assembly, breath figure, electrospinning and layer-by-layer methods. For each family of nanostructured membranes, examples of MD testing are reported analyzing the membrane productivity, efficiency and resistance to wetting and fouling. The performance of these membranes is also compared to that of commercial and conventional home-made membranes treated under similar operating conditions with seawater or simulate seawater.

Keywords

Ordered porous membranes, micromoulding, electrospinning, self-assembly, layer-bylayer, sustainable separation processes, water desalination, membrane distillation, freshwater

Preview
References
  • [1]World Water Development Report. 2023, Available: https://www.unesco.org/reports/wwdr/2023/en (Accessed on 28 February 2024)
  • [2]Pielke RA, Adegoke J, Hossain F, Niyogi D. Environmental and Social Risks to Biodiversity and Ecosystem Health-A Bottom-Up, Resource-Focused Assessment Framework. Earth 2021, 2: 440-456.
  • [3]Tang CY, Yang Z, Guo H, Wen JJ, Nghiem LD, et al. Potable Water Reuse through Advanced Membrane Technology. Environ. Sci. Technol. 2018, 52(18): 10215-10223.
  • [4]Biesheuvel PM, Porada S, Elimelech M, Dykstra, JE. Tutorial review of reverse osmosis and electrodialysis. J. Membr. Sci. 2022,647:120221.
  • [5]Talaeipour M, Nouri J, Hassani A, Mahavi AH. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment. J Environ Health Sci Engineer 2017, 15(18):1-9.
  • [6]Pangarkar BL, Deshmukh SK, Sapkal VS, Sapkal RS. Review of membrane distillation process for water purification. Desal. Water Treat. 2016, 57:7:2959-2981.
  • [7]Gugliuzza A, Basile A. Membrane contactors: Fundamentals, membrane materials and key operations. In Handbook of Membrane Reactors, 1st ed. Vol.2 Cambridge: Woodhead Publishing Limited, 2013. pp. 54-106.
  • [8]Farid MU, Kharraz JA, Sun J, Boey MW, Riaz MA, et al. Advancements in Nanoenabled Membrane Distillation for aSustainable Water-Energy-Environment Nexus. Adv. Mater. 2023: 2307950.
  • [9]Ullah R, Khraisheh M, Esteves RJ, McLeskey JT, AlGhouti M, et al. Energy efficiency of direct contact membrane distillation. Desalination 2018, 433:56-67
  • [10]Alkhudhiri A, Hilal N. Membrane distillation - Principles, applications, configurations, design, and implementation. In Emerging Technologies for Sustainable Desalination Handbook, 1st ed. Butterworth-Heinemann, Elsevier, 2018. pp.55-106.
  • [11]Frappa M, Castillo AEDR, Macedonio F, Di Luca G, Drioli E, et al. Exfoliated Bi2Te3-enabled membranes for new concept water desalination: Freshwater production meets new routes. Water Res. 2021, 203:117503.
  • [12]Gkika DA, Karmali V, Lambropoulou DA, Mitropoulos AC, Kyzas GZ. Membranes Coated with Graphene-Based Materials: A Review. Membr. 2023, 13(2):127.
  • [13]Wu J, Zodrow KR, Szemraj PB, Li Q. Photothermal nanocomposite membranes for direct solar membrane distillation. J. Mater. Chem. A 2017, 5: 23712-23719.
  • [14]Razmjou A, Arifin E, Dong G, Mansouri J, Chen V. Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 2012, 415-416: 850-863.
  • [15]Gugliuzza A, Aceto MC, Drioli E. Interactive functional poly (vinylidene fluoride) membranes with modulated lysozyme affinity: A promising class of new interfaces for contactor crystallizers. Polym. Int., 2009, 58(12): 1452-1464.
  • [16]Mpala TJ, Richards H, Etale A, Mahlangu OT, Nthunya LN. Carbon nanotubes and silver nanoparticles modification of PVDF membranes for improved seawater desalination in direct contact membrane distillation. Front. Membr. Sci. Technol. 2023 2: 1-11.
  • [17]Sinha RS, Singh BH, Dangayach R, Singh R, Deb CK, et al. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. Membr. 2020, 10(7):140.
  • [18]Jiang X, Shao Y, Li J, Wu M, Niu Y, et al. Bioinspired Hybrid Micro/Nanostructure Composited Membrane with Intensified Mass Transfer and Antifouling for High Saline Water Membrane Distillation. ACS Nano 2020, 14: 17376-17386.
  • [19]Frappa M, Del Rio Castillo AE, Macedonio F, Politano A, Drioli E, et al. A few-layer graphene for advanced composite PVDF membranes dedicated to water desalination: a comparative study. Nanoscale Adv. 2020, 2: 4728-4739.
  • [20]Li X, Qing W, Wu Y, Shao S, Peng LE, et al. Omniphobic Nanofibrous Membrane with Pine-Needle-Like Hierarchical Nanostructures: Toward Enhanced Performance for Membrane Distillation. ACS Appl. Mater. Interf. 2019, 11(51): 47963-47971.
  • [21]Nambikkattu J, Kaleekkal NJ. Investigating the performance of surface-engineered membranes for direct contact membrane distillation. Sep. Sci. Technol., 2023, 58(6): 1145-1161.
  • [22]Eykens L, De Sitter K, Dotremont C, Pinoy L, Van der Bruggen B. How To Optimize the Membrane Properties for Membrane Distillation: A Review. Ind. Eng. Chem. Res. 2016, 55(35): 9333–9343.
  • [23]Huang R, Liu Z, Woo YC, Luo W, Gray SR, et al. Emerging investigator series: engineering membrane distillation with nanofabrication: design, performance and mechanisms. Environ. Sci.: Water Res. Technol., 2020, 6:1786-1793.
  • [24]Zare S, Kargari A. Membrane properties in membrane distillation in: Emerging Technologies for Sustainable Desalination Handbook, (Ed. Gude VG), Butterworth-Heinemann 2018, pp.107-156.
  • [25]Liu L, Xiao Z, Liu Y, Li X, Yin H, et al. Understanding the fouling/scaling resistance of superhydrophobic/omniphobic membranes in membrane distillation. Desalination 2021, 499: 114864.
  • [26]Ni T, Lin J, Kong L, Zhao S. Omniphobic membranes for distillation: Opportunities and challenges. Chinese Chem Lett 2021, 328119: 3298-3306.
  • [27]Wang W, Du X, Vahabi H, Vahabi H, Zhao S, et al. Trade-off in membrane distillation with monolithic omniphobic membranes. Nat. Commun. 2019, 10(3220):1-9.
  • [28]Ramiasa M, Ralston J, Fetzer R, Sedev R. The influence of topography on dynamic wetting. Adv. Coll. Interf. Sci. 2014, 206: 275-293.
  • [29]Gugliuzza A. Membrane wettability in: Membrane Encyclopedia (Eds. Giorno L, Drioli E), Springer Verlag Berlin, 2015
  • [30]Barbieri L, Wagner E, Hoffmann P. Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles. Langmuir 2007, 23(4): 1723–1734.
  • [31]Bhushan B, Nosonovsky M, Jung, YC. Towards optimization of patterned superhydrophobic surfaces. J. R. Soc. Interf. 2007, 4: 643–648.
  • [32]Berg JC. Semi-empirical strategies for predicting adhesion. In Adhesion Science and Engineering, 1st ed. Amsterdam: Elsevier Science B.V. 2002. pp. 1-73.
  • [33]Milne AJB, Amirfazli A. The Cassie equation: How it is meant to be used. Adv. Coll. Interf. Sci. 2012, 170: 48-55.
  • [34]Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review. Desalination 2012, 287:2-18.
  • [35]Im BG, Lee JG, Kim YD, Kim WS. Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane. J. Membr. Sci. 2018, 565:14-24.
  • [36]Lawal DU. Performance enhancement of permeate gap membrane distillation system augmented with impeller. Sust. En. Techn. Ass. 2022, 54:102792.
  • [37]Olatunji SO, Camacho LM. Heat and Mass Transport in Modeling Membrane Distillation Configurations: A Review. Front. Energy Res 2018, 6:1-18.
  • [38]Lee S, Straub AP. Opportunities for high productivity and selectivity desalination via osmotic distillation with improved membrane design. J. Membr. Sci. 2020, 611: 118309.
  • [39]Strathmann H. Introduction to Membrane Science and Technology, 1st ed. Weinheim: Wiley-VCH Verlag GmbH, 2011. pp. 1-544.
  • [40]Vogelaar L, Lammertink R, Barsema J, Nijdam W, Bolhuis-Versteeg L, et al. Phase Separation Micromolding: A New Generic Approach for Microstructuring Various Materials. Small 2015, 1: 645-655.
  • [41]Barambu NU, Bilad MR, Wibisono Y, Jaafar J, Mahlia TMI, et al. Membrane Surface Patterning as a Fouling Mitigation Strategy in Liquid Filtration: A Review. Polymers 2019, 11(10):1687.
  • [42]Hu C, Yang Z, Sun Q, Ni Z, Yan G, et al. Facile Preparation of a Superhydrophobic iPP Microporous Membrane with Micron-Submicron Hierarchical Structures for Membrane Distillation. Polymers 2020, 12(4):962.
  • [43]Xiao Z, Zheng R, Liu Y, He H, Yuan X, et al. Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface. Water Res. 2019, 155:152-161.
  • [44]Mat Nawi NI, Bilad MR, Zolkhiflee N, Nordin NAH, Lau WJ, et al. Development of A Novel Corrugated Polyvinylidene difluoride Membrane via Improved Imprinting Technique for Membrane Distillation. Polymers 2019 11(5):865.
  • [45]Bormashenko E. Breath-Figure Self-Assembly, a Versatile Method of Manufacturing Membranes and Porous Structures: Physical, Chemical and Technological Aspects. Membr. 2017, 7(3):45.
  • [46]Gugliuzza A, Perrotta ML, Drioli E. Controlled Bulk Properties of Composite Polymeric Solutions for Extensive Structural Order of Honeycomb Polysulfone Membranes. Membr. 2016, 6(2):27.
  • [47]Tripathi BC, Pandey P. Breath figure templating for fabrication of polysulfone microporous membranes with highly ordered monodispersed porosity. J. Membr. Sci. 2014, 471: 201-210.
  • [48]Gugliuzza A, Aceto MC, Macedonio F, Drioli E. Water Droplets as Template for Next-Generation Self-Assembled Poly-(etheretherketone) with Cardo Membranes. J. Phys. Chem. B 2008, 112(34):10483-10496.
  • [49]Speranza V, Trotta F, Drioli E, Gugliuzza A. High-Definition Polymeric Membranes: Construction of 3D Lithographed Channel Arrays through Control of Natural Building Blocks Dynamics. ACS Appl. Mater. Interf. 2010, 2(2): 459-46.
  • [50]Perrotta ML, Saielli G, Casella G, Macedonio F, Giorno L, et al. An ultrathin suspended hydrophobic porous membrane for high-efficiency water desalination. Appl. Mater. Today 2017 (9): 1-9.
  • [51]Lee LR, Liu CT, Tseng HF, Lin KT, Chu CW, et al. Hierarchical Polymer Structures Using Templates and the Modified Breath Figure Method. Langmuir 2018, 34(25):7472–7478.
  • [52]Tang M, Christie KSS, Hou D, Ding C, Jia X, et al. Fabrication of a novel underwater-superoleophobic/hydrophobic composite membrane for robust anti-oil-fouling membrane distillation by the facile breath figures templating method. J. Membr. Sci. 2021, 617:118666.
  • [53]Radjabian A, Abetz V. Advanced porous polymer membranes from self-assembling block copolymers. Prog. Polym. Sci. 2020, 102:101219.
  • [54]Maia Y, Eisenberg A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41:5969-5985.
  • [55]Kloos J, Joosten N, Schenning A, Nijmeijer K. Self-assembling liquid crystals as building blocks to design nanoporous membranes suitable for molecular separations. J. Membr. Sci. 2021, 620:11884.
  • [56]Henmi M, Nakatsuji K, Ichikawa T, Tomioka H, Sakamoto T, et al. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv. Mater. 2012, 24:2238-2241.
  • [57]Foley K, Walters KB. Solution and Film Self-Assembly Behavior of a Block Copolymer Composed of a Poly (ionic Liquid) and a Stimuli-Responsive Weak Polyelectrolyte. ACS Omega 2023, 8:33684-33700.
  • [58]Lang C, Kumar M, Hickey RJ. Current Status and Future Directions of Self-Assembled Block Copolymer Membranes for Molecular Separations. Soft Matter 2021, 17:10405-10415.
  • [59]Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 365:15-30.
  • [60]Li X, García-Payo MC, Khayet M, Wang M, Wang X. Superhydrophobic polysulfone/polydimethylsiloxane electrospun nanofibrous membranes for water desalination by direct contact membrane distillation J. Membr. Sci. 2017, 542:308-319.
  • [61]Guo F, Servi A, Liu A, Gleason KK, Rutledge GC. Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition. ACS Appl. Mater. Interf. 2015, 7:8225-8232.
  • [62]Cai J, Liu Z, Guo F. Transport analysis of anti-wetting composite fibrous membranes for membrane distillation. Membranes 2021, 11:14.
  • [63]Maab H, Francis L, Al-saadi A, Aubry C, Ghaffour N, et al. Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, J. Membr. Sci. 2012 (423-424): 11-19
  • [64]Guo J, Deka B, Kim K. A Regeneration of superhydrophobic TiO2 electrospun membranes in seawater desalination by water flushing in membrane distillation. Desalination 2019, 468:114054.
  • [65]Hou D, Lin D, Ding C, Wang D, Wang J. Fabrication and characterization of electrospun superhydrophobic PVDF-HFP/SiNPs hybrid membrane for membrane distillation. Sep. Purif. Technol. 2017, 189:82-89.
  • [66]Wu XQ, Mirza NR, Huang Z, Zhang J, Zheng YM, et al. Enhanced desalination performance of aluminium fumarate MOF-incorporated electrospun nanofiber membrane with bead-on-string structure for membrane distillation. Desalination 2021, 520:15 115338.
  • [67]Nassrullah H, Makanjuola O, Janajreh I, AlMarzooqi F, Hashaikeh R. Incorporation of nanosized LTL zeolites in dual-layered PVDF-HFP/cellulose membrane for enhanced membrane distillation performance. J. Membr. Sci. 2020, 611:118298.
  • [68]Li H, Shi W, Zeng X, Huang S, Zhang H, et al. Improved desalination properties of hydrophobic GO-incorporated PVDF electrospun nanofibrous composites for vacuum membrane distillation. Sep. Purif. Technol. 2020, 230:115889.
  • [69]Woo Y, Tijing L, Shim W, Choi J, Kim S, et al. Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. J. Membr. Sci. 2016, 520:99-110.
  • [70]Prince JA, Rana D, Matsuura T, Ayyanar N, Shanmugasundaram TS, et al. Nanofiber based triple layer hydro-philic/-phobic membrane - a solution for pore wetting in membrane distillation. Sci. Rep. 2015, 4:6949.
  • [71]Elmarghany MR, El-Shazly AH, Rajabzadeh S, Salem MS, Shouman MA, et al. Triple-layer nanocomposite membrane prepared by electrospinning based on modified PES with carbon nanotubes for membrane distillation applications. Membranes 2020, 10:15.
  • [72]Efome JE, Rana D, Matsuura T, Yang F, Cong Y, et al. Triple-layered nanofibrous metal-organic framework-based membranes for desalination by direct contact membrane distillation. ACS Sustain. Chem. Eng. 2020, 8:6601-6610.
  • [73]Picart C, Caruso F, Voegel JC, Decher G. Layer-by-Layer Films for Biomedical Applications, 1sr ed. Weinheim: Wiley&Sons, 2014. pp.1-592.
  • [74]Pingitore V, Gugliuzza A. Fabrication of Porous Semiconductor Interfaces by pH-Driven Assembly of Carbon Nanotubes on Honeycomb Structured Membranes. J. Phys. Chem. C 2013, 117:26562−26572.
  • [75]Fu J, Schlenoff JB. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. J. Am. Chem. Soc. 2016, 138:980-990.
  • [76]Quinn JF, Johnston AP, Such GK, Zelikin AN, Caruso F. Next Generation, Sequentially Assembled Ultrathin Films: Beyond Electrostatics. Chem. Soc. Rev. 2007, 36:707-718.
  • [77]Kharlampieva E, Kozlovskaya V, Sukhishvili SA. Layer-by-Layer Hydrogen-Bonded Polymer Films: From Fundamentals to Applications. Adv. Mater. 2009, 21: 3053-3065.
  • [78]Shimazaki Y, Mitsuishi M, Ito S, Yamamoto M. Preparation of the Layer-by-Layer Deposited Ultrathin Film Based on the Charge-Transfer Interaction. Langmuir 1997, 13:1385-1387.
  • [79]Xiong H, Cheng M, Zhou Z, Zhang X, Shen J. A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles Adv. Mat. 1998, 10:529-532.
  • [80]Zhu J, Shim BS, Di Prima M, Kotov NA. Transparent Conductors from Carbon Nanotubes LBL-Assembled with Polymer Dopant with π-π Electron Transfer, J. Am. Chem. Soc. 2011, 133:7450-7460.
  • [81]Van der Heyden A, Wilczewski M, Labbé P, Auzély R. Multilayer films based on host–guest interactions between biocompatible polymers. Chem. Comm. 2006: 3220-3222.
  • [82]Xiong H, Cheng M, Zhou Z, Zhang X, Shen J. A New Approach to the Fabrication of a Self-Organizing Film of Heterostructured Polymer/Cu2S Nanoparticles. Adv. Mat. 1998, 10:529-532.
  • [83]Bourdillon C, Demaille C, Moiroux J, Saveant JM. Step-by-Step Immunological Construction of a Fully Active Multilayer Enzyme Electrode. J. Am. Chem. Soc. 1994, 116:10328-10329.
  • [84]Such GK, Quinn JF, Quinn A, Tjipto E, Caruso F, Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry, J. Am. Chem. Soc. 2006, 128:9318-9319.
  • [85]Mateos-Maroto A, Abelenda-Núñez I, Ortega F, Rubio RG, Guzmán E. Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel) 2021, 13:1221.
  • [86]Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, et al. Innovation in Layer-by-Layer Assembly. Chem. Rev. 2016, 116:14828-14867.
  • [87]Zhang YY, Sun JQ. Multilevel and Multicomponent Layer-by-Layer Assembly for the Fabrication of Nanofibrillar Films. ACS Nano 2015, 9:7124-7132.
  • [88]Gugliuzza A, Pingitore V, Miriello D, Drioli E. Functional carbon nanotubes for high-quality charge transfer and moisture regulation through membranes: structure-functions insights. Phys. Chem. Chem. Phys. 2015, 17:12919.
  • [89]Pingitore V, Miriello M, Drioli E, Gugliuzza A. Integrated carboxylic carbon nanotubes pathway with membranes for voltage-activated humidity detection and microclimate regulation. Soft Matter 2015, 11:4461-4468.
  • [90]Lim HS, Han JT, Kwak D, Jin M, Cho K. Photoreversibly Switchable Superhydrophobic Surface with Erasableand Rewritable Pattern. J. Am. Chem. Soc. 2000, 128:14458-14459.
  • [91]Hua F, Shi J, Lvov Y, Cui T. Patterning of Layer-by-Layer Self-Assembled Multiple Types of Nanoparticle Thin Films by Lithographic Technique. Nano Lett. 2002, 2: 1219-1222.
  • [92]Zhang X, Chen H, Zhang, H. Layer-by-Layer Assembly: From Conventional to Unconventional Methods. Chem. Commun. 2007:1395-1405.
  • [93]Di Luca G, Chen G, Jin W, Gugliuzza A. Aliquots of MIL-140 and Graphene in Smart PNIPAM Mixed Hydrogels: A Nanoenvironment for a More Eco-Friendly Treatment of NaCl and Humic Acid Mixtures by Membrane Distillation. Membr. 2015, 13:437.
  • [94]Chin JY, Teoh GH, Ahmad AL, Low SC. Superhydrophobic surface coating on electrospun polypropylene membrane to treat high salinity water in membrane distillation. Water Sci Technol. 2020, 82:2948-2961.
  • [95]Xie S, Chen Y, Feng D, Wang Z. Thin-Film Composite Membrane with a Hydrophobic Substrate for Robust Membrane Distillation. Adv.Mater. Technol. 2023, 8:2201426.
  • [96]Chen Y, Lu KJ, Japip S, Chung TS. Can Composite Janus Membranes with an Ultrathin Dense Hydrophilic Layer Resist Wetting in Membrane Distillation? Environ. Sci. Technol. 2020, 54:12713-12722.
  • [97]Woo YC, Kim Y, Yao M, Tijing LD, Choi JS, et al. Hierarchical Composite Membranes with Robust Omniphobic Surface Using Layer-By-Layer Assembly Technique. Environ. Sci. Technol. 2018, 52:2186-2196.
  • [98]Liu D, Cao J, Qiu M, Zhang G, Hong Y. Enhanced properties of PVDF nanofibrous membrane with liquid-like coating for membrane distillation. Sep. Purif. Technol. 2022, 295:121282.
  • [99]Zhou L, Li CL, Chang PT, Tan SH, Ahmad AL, et al. Intrinsic microspheres structure of electrospun nanofibrous membrane with rational superhydrophobicity for desalination via membrane distillation. Desalination 2022, 527:115594.
  • [100]Zhang X, Liao X, Shi M, Liao Y, Razaqpur AG, et al. Guide to rational membrane selection for oily wastewater treatment by membrane distillation. Desalination 2023, 5(49):116323
  • [101]Hou D, Fan H, Jiang Q, Wang J, Zhang X. Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation, Separ. Purif. Techn. 2015, 135:211-222
  • [102]Gontarek-Castro E, Di Luca G, Lieder M, Gugliuzza A. Graphene-Coated PVDF Membranes: Effects of Multi-Scale Rough Structure on Membrane Distillation Performance. Membr. 2022, 12:511.
  • [103]Su Q, Zhang J, Zhang LZ. Fouling resistance improvement with a new superhydrophobic electrospun PVDF membrane for seawater desalination, Desalination 2020, 476:114246.
  • [104]Sun Q, Yang Z, Hu C, Li C, Yan G, et al. Facile preparation of superhydrophobic PVDF microporous membranes with excellent anti-fouling ability for vacuum membrane distillation. J. Membr.Sci. 2020, 605:118106.
  • [105]Liao Y, Wang R, Fane AG. Engineering superhydrophobic surface on poly(vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J. Membr. Sci. 2013, 440:77–87.
  • [106]Fan H, Peng Y. Application of PVDF membranes in desalination and comparison of the VMD and DCMD processes. Chem. Eng. Sci. 2012, 79:94–102.