Review
Open Access
Expand
Single-layer, multi-layer and superlattice chalcogenides for non-volatile memory and artificial intelligence device
Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
Abstract

Chalcogenide materials such as GeTe, Sb2Te3, Ge2Sb2Te5, compounds of sulfur, selenium, and tellurium, are characterized by a rapid and reversible phase transition. They have emerged as versatile candidates for advanced electronic and computing applications due to their unique optical and electrical properties. The potential of single-layer, multi-layer, and superlattice chalcogenides as the active materials in non-volatile memory (NVM) and artificial intelligence (AI) devices is shown in this review. Single-layer chalcogenides often offer exceptional scalability, fast speed, and nonvolatility, enabling them usable for NVM and synaptic devices. Multi-layer chalcogenides with stacked structures exhibit unique properties different from single-layer chalcogenides, allowing high performance such as low power and multilevel storage. Superlattice chalcogenides with alternating chalcogenide layers enable ultra-low power consumption of devices, in which only few of atom moves for the operation of devices. This review also gives some related research details. A comprehensive understanding of these studies provides insights into the design and application of chalcogenide-based devices, offering pathways for future research and innovation in memory and AI hardware.

Keywords

chalcogenide; phase change; non-volatile memory; artificial intelligence

Preview
References
  • [1] Kolomiets BT, Gorunova NA. Semiconducting properties of chalcogenide glasses. Sov. Phys. Semicond. 1955, 1(4):559–566.
  • [2] Ovshinsky SR. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 1968, 21(20):1450–1453.
  • [3] Sie CH. Memory cell using bistable resistivity in amorphous As-Te-Ge film. Retrospective Theses and Dissertations. Iowa State University, 1969.
  • [4] Adler D, Shur MS, Silver M, Ovshinsky SR. Threshold switching in chalcogenide-glass thin films. J. Appl. Phys. 1978, 49(6):3289–3305.
  • [5] Tanaka K, Shimakawa K. Chalcogenide glasses in Japan: a review on photoinduced phenomena. Phys. Status Solidi B 2002, 229(1):651–660.
  • [6] Greer AL. Materials science: changing face of the chameleon. Nature 2005, 437(7057):1246–1247.
  • [7] Lankhorst MHR, Ketelaars BW, Wolters RAM. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 2005, 4(4):347–352.
  • [8] Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J. Appl. Phys. 1991, 69(5):2849–2856.
  • [9] Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6(11):824–832.
  • [10] Raoux S. Phase change materials. Annu. Rev. Mater. Res. 2009, 39:25–48.
  • [11] Zhang W, Mazzarello R, Wuttig M, Ma E. Designing crystallization in phase-change materials for universal memory. Nat. Rev. Mater. 2019, 4:150–168.
  • [12] Salinga M, Kersting B, Ronneberger I, Jonnalagadda VP, Vu XT, et al. Monatomic phase change memory. Nat. Mater. 2018, 17(8):681–685.
  • [13] Loke D, Lee TH, Wang WJ, Shi LP, Zhao R, et al. Breaking the speed limits of phase-change memory. Science 2012, 336(6088):1566–1569.
  • [14] Simpson RE, Fons P, Kolobov AV, Fukaya T, Krbal M, et al. Interfacial phase-change memory. Nat. Nanotechnol. 2011, 6(8):501–505.
  • [15] Tominaga J, Kikukawa T, Takahashi M, Phillips RT. Structure of the optical phase change memory alloy, Ag–V–In–Sb–Te, determined by optical spectroscopy and electron diffraction. J. Appl. Phys. 1997, 82(7), 3214–3218.
  • [16] Yin Y, Zhang H, Hosaka S, Liu Y, Yu Q, et al. Volume-change-free GeTeN film for high-performance phase-change memory. J. Phys. D: Appl. Phys. 2013, 46(50):505311.
  • [17] Yin Y, Sone H, Hosaka S. Characterization of nitrogen-doped Sb2Te3 films and their application to phase-change memory. J. Appl. Phys. 2007, 102(6):64503.
  • [18] Yin Y, Morioka S, Kozaki S, Satoh R, Hosaka S, et al. Oxygen-doped Sb2Te3 for high-performance phase-change memory. Appl. Surf. Sci. 2015, 349:230–234.
  • [19] Fujiwara T, Niiyama K, Yin Y. Characterization of undoped and N-Ti codoped Zn5Sb3Te chalcogenides. Jpn. J. Appl. Phys. 2023, 62(SG1023):1–6.
  • [20] Zhu M, Wu L, Rao F, Song Z, Ren K, et al. Uniform Ti-doped Sb2Te3 materials for high-speed phase change memory applications. Appl. Phys. Lett. 2014, 104:053119.
  • [21] Zhang Y, Feng J, Zhang Z, Cai B, Lin Y, et al. Characteristics of Si-doped Sb2Te3 thin films for phase-change random access memory. Appl. Surf. Sci. 2008, 254(17):5602–5606.
  • [22] Lai YF, Feng J, Qiao BW, Cai YF, Lin YY, et al. Stacked chalcogenide layers used as multi-state storage medium for phase change memory. Appl. Phys. A 2006, 84(1):21–25.
  • [23] Yin Y, Higano N, Sone H, Hosaka S. Ultramultiple-level storage in TiN/SbTeN double-layer cell for high-density non-volatile memory. Appl. Phys. Lett. 2008, 92(16):163509.
  • [24] Yin Y, Sone H, Hosaka S. Lateral SbTeN-based multi-layer phase-change memory for multi-state storage. Microelectron. Eng. 2007, 84(12):2901–2906.
  • [25] Guo X, Hu Y, Chou Q, Lai T, Zhu X. Investigation of Sb65Se35/Sb multilayer thin films for high speed and high thermal stability application in phase change memory. J. Mater. Sci.: Mater. Electron. 2018, 29(19):16172–16177.
  • [26] Liu R, Zhou X, Zhai J, Song J, Wu P, et al. Multilayer SnSb4–SbSe thin films for phase change materials possessing ultrafast phase change speed and enhanced stability. ACS Appl. Mater. Interfaces 2017, 9(32):27004–27013.
  • [27] Chong TC, Shi LP, Zhao R, Tan PK, Li JM, et al. Phase-change random access memory cell with superlattice-like structure. Appl. Phys. Lett. 2006, 88:122114.
  • [28] Feng X, Wen T, Zhai J, Lai T, Wang C, et al. Ge2Sb2Te5/SnSe2 nanocomposite multilayer thin films for phase change memory application. Appl. Surf. Sci. 2014, 316:286–291.
  • [29] Zhou L, Yang Z, Wang X, Qian H, Xu M, et al. Resistance drift suppression utilizing GeTe/Sb₂Te₃ superlattice-like phase-change materials. Adv. Electron. Mater. 2019, 5(11):1900781.
  • [30] Zheng L, Song W, Song Z, Song S. Designing multiple crystallization in superlattice-like phase-change materials for multilevel phase-change memory. ACS Appl. Mater. Interfaces 2019, 11(49):45885–45891.
  • [31] Wu K, Khan A, Pop E. Understanding interface-controlled resistance drift in superlattice phase change memory. IEEE Electron Device Lett. 2022, 43(6):1669–1672.
  • [32] Wu X, Khan AI, Lee H, Hsu C-F, Zhang H, et al. Novel nanocomposite-superlattices for low energy and high stability nanoscale phase-change memory. Nat. Commun. 2024, 15(1):13.
  • [33] Khan A, Kwon H, Chen M, Asheghi M, Wong H, et al. Electro-thermal confinement enables improved superlattice phase change memory. IEEE Transactions on Electron Devices Lett. 2022, 43(2):204–207.
  • [34] Feng X, Wen T, Zhai J, Lai T, Wang C, et al. Unveiling the effect of superlattice interfaces and intermixing on phase change memory performance. Nano Letters. 2022, 22(15):6285–6291.
  • [35] Kang S, Jin S, Lee J, Woo D, Shim, T. et al. Layer-dependent effects of interfacial phase-change memory for an artificial synapse. Phys. Status Solidi RRL 2022, 16:2100616.
  • [36] Kang S, Jin S, Lee J, Woo D, Shim T, et al. Bidirectional electric-induced conductance based on GeTe/Sb2Te3 interfacial phase change memory for neuro-inspired computing. Electronics 2021, 10:2692.
  • [37] Yamada N, Ohno E, Akahira N, Nishiuchi K, Nagata K, et al. High speed overwritable phase change optical disk material. Jpn. J. Appl. Phys. 1987, 26(S4):61.
  • [38] Ohta T. Phase-change optical memory promotes the DVD optical disk. J. Optoelectron. Adv. Mater. 2001, 3:609–626.
  • [39] Wuttig M. Phase-change materials—towards a universal memory? Nat. Mater. 2005, 4:265–266.
  • [40] Yin Y, Zhang Y, Takehana Y, Kobayashi R, Zhang H, et al. Sub-10 ns fast switching and resistance control in lateral GeTe-based phase-change memory. Jpn. J. Appl. Phys. 2016, 55(06GG07):1–6.
  • [41] Zeng Y, Jin J, Gu R, Cheng X, Xu M, et al. A fast and high endurance phase change memory based on in-doped Sb₂Te₃. ACS Appl. Nano Mater. 2024, 7(12):13983–13990.
  • [42] Wang Y, Wang T, Zheng Y, Liu G, Li T, et al. Atomic scale insight into the effects of Aluminum doped Sb₂Te for phase change memory application. Sci. Rep. 2018, 8(1):15136.
  • [43] Guo T, Song S, Song Z, Ji X, Xue Y, et al. SiC-Doped Ge2Sb2Te5 Phase-change material: a candidate for high-density embedded memory application. Adv. Electron. Mater. 2018, 4:1800083.
  • [44] Shi Y, Fong S, Wong HSP, Kuzum D. Synaptic devices based on phase-change memory. In Neuro-inspired Computing Using Resistive Synaptic Devices, 1st ed, Yu S, Eds. Cham: Springer, 2017.
  • [45] Yang Z, Huang X, Wang Z, Chen K, Ma B, et al. BiFeO3/SrTiO3 superlattice-like based ferroelectric memristors with pronounced artificial synaptic plasticity. J. Alloys Compd. 2024, 1007:176364.
  • [46] Wang C, Mao GQ, Huang M, Huang E, Zhang Z, et al. HfOx/AlOy superlattice-like memristive synapse. Adv. Sci. 2022, 9(21):22014
  • [47] Debnath S, Dey S, Giri PK. Exploring moiré superlattices and memristive switching in non-van der Waals twisted bilayer Bi₂O₂Se. ACS Appl. Mater. Interfaces 2025, 17(5):8219–8230.
  • [48] Jin SM, Kang SY, Kim HJ, Lee JY, Nam IH. et al. Sputter-grown GeTe/Sb₂Te₃ superlattice interfacial phase change memory for low power and multi-level-cell operation. Electron. Lett. 2022, 58(1):38–40.
  • [49] Kolobov A, Fons P, Saito Y, Tominaga J. Atomic reconfiguration of van der Waals gaps as the Key to switching in GeTe/Sb₂Te₃ Superlattices. ACS Omega 2017, 2(9):6223–6232.
  • [50] Momand J, Wang R, Boschker H, Verheijen MA, Calarco R, et al. Interface formation of two-and three-dimensionally bonded materials in the case of GeTe-Sb₂Te₃ superlattices. Nanoscale 2015, 7(44):19136–19143.
  • [51] Chiu SJ, Liu YT, Yu GP, Lee HY, Huang JH. The structure and ferroelectric property of La-doped BiFeO₃/SrTiO₃ artificial superlattice structure by RF sputtering: Effect of deposition temperature. Thin Solid Films 2013, 529:85–88.