Review
Open Access
Expand
Electronic structure and nuclear-environment applications of MAX phases: a theoretical perspective
1 Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
2 University of Chinese Academy of Sciences, Beijing 100049, China.
3 Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
4 Qianwan Institute of CNiTECH, Ningbo 315336, China.
5 Institute of Heavy Ion Physics, Peking University, Beijing 100871, China.
  • Volume
  • Citation
    Chen Y, Zhao S, Zhang Y, Li Y, Gu X, et al. Electronic structure and nuclear-environment applications of MAX phases: a theoretical perspective. AI Mater. 2025(1):0008, https://doi.org/10.55092/aimat20250008. 
  • DOI
    10.55092/aimat20250008
  • Copyright
    Copyright2025 by the authors. Published by ELSP.
Abstract

MAX phases, a family of ternary layered carbide and nitride compounds characterized by their atomic-scale hybridization of metallic and covalent-ionic bonding, have emerged as potential materials for extreme environments, including fusion reactor cladding and ultrahigh-temperature sensing. Despite a twofold increase in known compositions over the past five years, the discovery and application of novel MAX phases remain hindered by metastable phase competition under non-equilibrium synthesis, inefficiencies in experimental synthesis/characterization, and ambiguous performance metrics under extreme conditions (e.g., high temperatures, irradiation). Recent breakthroughs in computational materials science — notably high-throughput density functional theory (HT-DFT) and machine learning (ML) — have revolutionized the exploration of these materials by enabling predictive screening of stability and performance. This review systematically analyzes advances in theoretical understanding of MAX phases, focusing on three pillars: electronic structure, thermodynamics and irradiation performance. Finally, brief insights into the challenges and future opportunities for the MAX phases are provided.

Keywords

MAX phases; artificial intelligence; thermodynamic properties; nuclear-environment applications

Preview
References
  • [1] W. BM. The MN+1AXN phases: a new class of solids: thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000, 28:20
  • [2]W. BM. MAX phases, properties of machinable ternary carbides and nitrides, Wiley-VCH: Weinheim, 2013.
  • [3]Sun ZM. Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev. 2013, 56(3):143–166.
  • [4]Barsoum MW, Radovic M. Elastic and mechanical properties of the MAX phases. In Annu. Rev. Mater. Res., Palo Alto: Annual Reviews, 2011, pp. 195–227.
  • [5]Barsoum MW, ElRaghy T. Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996, 79(7):1953–1956.
  • [6]Korchagin MA, Gavrilov AI, Grishina IV, Dudina DV, Ukhina AV, et al. Self-propagating high-temperature synthesis of Ti3SiC2 and Ti3AlC2 single-phase MAX phases in mechanically activated mixtures of initial reactants. Combust. Explos. Shock Waves 2022, 58(1):46–53.
  • [7]Wozniak J, Petrus M, Moszczynska D, Lachowski A, Cygan T, et al. The consolidation of SiC ceramics using MAX phases as a new family of sintering activators. Arch. Civ. Mech. Eng. 2024, 24(2).
  • [8]Medvedeva NI. Electronic properties of Ti3SiC2-based solid solutions. Phys. Rev. B 1998, 58(24):16042.
  • [9]Zhou J, Dahlqvist M, Björk J, Rosen J. Atomic scale design of MXenes and their parent materials-from theoretical and experimental perspectives. Chem. Rev. 2023, 123(23):13291–13322.
  • [10]Zhiyao Lu, Yun Fan, Zhaoxu Sun, Xiaodong He, Chuchu Yang, et al. A fast composition-stability machine learning model for screening MAX phases and guiding discovery of Ti₂SnN. J. Adv. Ceram. 2025.
  • [11]Lu Z, He X, Yin H, Zhang J, Song G, et al. Theoretical screening, intrinsic brittleness and thermal properties of the S-containing MAX carbides and borides. J. Materiomics 2023, 9(6):1056–1066.
  • [12]Zhang J, Yang C, Jiang C, Zou Y, Qin K, et al. DFT-assisting experimental insights into interfacial inter-diffusion of TBCs with Cr2AlC as the bond coat. Acta Mater. 2025, 288.
  • [13]Aryal S, Sakidja R, Barsoum MW, Ching W-Y. A genomic approach to the stability, elastic, and electronic properties of the MAX phases. phys. status solidi B 2014, 251(8):1480–1497.
  • [14]Talapatra A, Duong T, Son W, Gao H, Radovic M, et al. High-throughput combinatorial study of the effect of M site alloying on the solid solution behavior of M2AlC MAX phases. Phys. Rev. B 2016, 94(10):15.
  • [15]Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13(3):246–252.
  • [16]Bai Y, Srikanth N, Chua CK, Zhou K. Density functional theory study of Mn+1AXn phases: A review. Crit. Rev. Solid State Mater. Sci. 2019, 44(1):56–107.
  • [17]Zhang Y, Mao Z, Han Q, Li Y, Li M, et al. The role of Hume-Rothery's rules play in the MAX phases formability. Materialia 2020, 12.
  • [18]Sauceda D, Singh P, Falkowski AR, Chen Y, Doung T, et al. High-throughput reaction engineering to assess the oxidation stability of MAX phases. npj Comput. Mater. 2021, 7(1).
  • [19]Bjork J, Zhou J, Persson POA, Rosen J. Two-dimensional materials by large-scale computations and chemical exfoliation of layered solids. Science 2024, 383(6688):1210–1215.
  • [20]Barsoum MW, El-Ragh T. The MAX phases: Unique new carbide and nitride materials. Am. Scientist 2001, 89:334–343.
  • [21]Chen D, Shirato K, Barsoum MW, El-Raghy T, Ritchie RO. Cyclic fatigue-crack growth and fracture properties in Ti3SiC2 ceramics at elevated temperatures. J. Am. Ceram. Soc. 2001, 84(12):2914–2920.
  • [22]Gruber J, Lang AC, Griggs J, Taheri ML, Tucker GJ, et al. Evidence for bulk ripplocations in layered solids. Sci. Rep. 2016, 6:33451.
  • [23]Barsoum MW. Ripplocations: A progress report. Front. Mater. 2020, 7.
  • [24]Sokol M, Natu V, Kota S, Barsoum MW. On the chemical diversity of the MAX phases. Trends Chem. 2019, 1(2):210–223.
  • [25]Dahlqvist M, Barsoum MW, Rosen J. MAX phases – Past, present, and future. Mater. Today 2024, 72:1–24.
  • [26]Cover MF, Warschkow O, Bilek MM, McKenzie DR. A comprehensive survey of M2AX phase elastic properties. J. Phys-Condens Mat. 2009, 21(30):305403.
  • [27]Dahlqvist M, Alling B, Rosén J. Stability trends of MAX phases from first principles. Phys. Rev. B 2010, 81(22):4.
  • [28]Ashton M, Hennig RG, Broderick SR, Rajan K, Sinnott SB. Computational discovery of stable M2AX phases. Phys. Rev. B 2016, 94(5):8.
  • [29]Dahlqvist M, Rosen J. Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases. Nanoscale 2020, 12(2):785–794.
  • [30]Li SH, Yang ZN, Khaledialidusti R, Lin S, Yu J, et al. High-throughput study and machine learning on MAX and MAB phases: new materials and fingerprints of superior lattice thermal conductivities. Acta Mater. 2023, 254:12.
  • [31]Khaledialidusti R, Khazaei M, Khazaei S, Ohno K. High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 2021, 13(15):7294–7307.
  • [32]Curtarolo S, Hart GL, Nardelli MB, Mingo N, Sanvito S, et al. The high-throughput highway to computational materials design. Nat. Mater. 2013, 12(3):191–201.
  • [33]Dahlqvist M, Rosen J. The rise of MAX phase alloys - large-scale theoretical screening for the prediction of chemical order and disorder. Nanoscale 2022, 14(30):10958–10971.
  • [34]Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 2016, 4(5).
  • [35]Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C. Machine learning in materials informatics: recent applications and prospects. npj Comput. Mater. 2017, 3(1).
  • [36]Batra R, Song L, Ramprasad R. Emerging materials intelligence ecosystems propelled by machine learning. Nat. Rev. Mater. 2020, 6(8):655–678.
  • [37]Schmidt J, Marques MRG, Botti S, Marques MAL. Recent advances and applications of machine learning in solid-state materials science. npj Comput. Mater. 2019, 5(1).
  • [38]Li M, Lu J, Luo K, Li YB, Chang KK, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Ceram. Soc. 2019, 141(11):4730–4737.
  • [39]Li YB, Li M, Lu J, Ma BK, Wang ZP, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. Acs Nano 2019, 13(8):9198–9205.
  • [40]Fashandi H, Lai CC, Dahlqvist M, Lu J, Rosen J, et al. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2 Chem. Commun. 2017, 53(69):9554–9557.
  • [41]Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak SI, et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nat. Mater. 2017, 16(8):814–818.
  • [42]Pettifor DG. A chemical scale for crystal-structure maps. Solid State Commun. 1984, 51(1):31–34.
  • [43]Zhang Y, Xu Y, Huang Q, Du S, Li M, et al. Structure maps for MAX phases formability revisited. Ceram. Int. 2024, 50(2):2855–2863.
  • [44]Lookman T, Alexander FJ, Rajan K. Information science for materials discovery and design, Springer, 2016.
  • [45]Gonzalez-Julian J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 2021, 104(2):659–690.
  • [46]Ying G, He X, Li M, Han W, He F, et al. Synthesis and mechanical properties of high-purity Cr2AlC ceramic. Mater. Sci. Eng.: A 2011, 528(6):2635–2640.
  • [47]Tian ZH, Yan BZ, Wu FS, Tang JW, Xu XQ, et al. Synthesis of Ti2(InxAl1-x)C (x=0-1) solid solutions with high-purity and their properties. J. Eur. Ceram. Soc. 2023, 43(14):5915–5924.
  • [48]Vershinnikov VI, Kovalev DY. Synthesis of the Ti3SiC2 MAX phase via combustion in the TiO2–Mg–Si–C system. Inorg. Mater. 2020, 56(12):1211–1216.
  • [49]Bai Y, He X, Li Y, Zhu C, Zhang S. Rapid synthesis of bulk Ti2AlC by self-propagating high temperature combustion synthesis with a pseudo–hot isostatic pressing process. J. Mater. Res. 2011, 24(8):2528–2535.
  • [50]Bendjemil B, Zhang F. Ti3SiC2 MAX phase synthesis by plasma basis method. Univers. J. Mater. Sci. 2014, 2(5):83–89.
  • [51]Li H, Sun W, Liu Q, Li K, Chen L, et al. Insights into the mechanical properties and thermal transport of Ti3(Al1-xAx)C2 solid solutions: A comprehensive theoretical study combined with experiment. J. Alloys Compd. 2024, 1009.
  • [52]Chen L, Deng Z-x, Li M, Peng L, Chang K, et al. Phase diagrams of novel MAX phases. J. Inorg. Mater. 2020, 35(1):35–40.
  • [53]Zeng F, Zheng H, Li G, Geng Y, Peng P. Study on the structural, mechanical, and dynamical stabilities and properties of Nb2AN (A = Si, Ge, and Sn) MAX phases by first principle. J. Am. Ceram. Soc. 2022, 105(8):5285–5298.
  • [54]Ding HM, Li YB, Li M, Chen K, Liang K, et al. Chemical scissor-mediated structural editing of layered transition metal carbides. Science 2023, 379(6637):1130–1135.
  • [55]Ding HM, Li YB, Lu J, Luo K, Chen K, et al. Synthesis of MAX phases Nb2CuC and Ti2(Al0.1Cu0.9)N by A-site replacement reaction in molten salts. Mater. Res. Lett. 2019, 7(12):510–516.
  • [56]Li YB, Zhu SR, Wu ER, Ding HM, Lu J, et al. Nanolaminated ternary transition metal carbide (MAX phase)-derived core-shell structure electrocatalysts for hydrogen evolution and oxygen evolution reactions in alkaline electrolytes. J. Phys. Chem. Lett. 2023, 14(2):481–488.
  • [57]Zhou Y, Sun Z. Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramics. Phys. Rev. B 2000, 61(19):12570–12573.
  • [58]Sun Z, Zhou Y. Electronic structure and structural properties of Ti4AlN3 investigated by ab initio calculations. J. Phys. Soc. Jpn. 2002, 71(5):1313–1317.
  • [59]Wang J, Zhou Y. Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 2009, 39(1):415–443.
  • [60]Radovic M, Barsoum MW. MAX phases: bridging the gap between metals and ceramics. Ame. Ceram. Soc. Bull. 2013, 92(3):20–27.
  • [61]Hadi MA, Kelaidis N, Naqib SH, Chroneos A, Islam AKMA. Electronic structures, bonding natures and defect processes in Sn-based 211 MAX phases. Comput. Mat. Sci. 2019, 168:203–212.
  • [62]Liu P, Liu Z, Hou B, Wang A, Xie J, et al. A systematic investigation on the surface properties of Ti2AlC via first-principles calculations. Surf. Sci. 2023, 735.
  • [63]Cui S, Feng W, Hu H, Feng Z, Liu H. Hexagonal Ti2SC with high hardness and brittleness: a first-principles study. Scri. Mater. 2009, 61(6):576–579.
  • [64]Ding H, Li M, Li Y, Chen K, Xiao Y, et al. Progress in structural tailoring and properties of ternary layered cramics. J. Inorg. Mater. 2023, 38(8):845–884.
  • [65]Magnuson M, Mattesini M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 2017, 621:108–130.
  • [66]Anasori B, Halim J, Lu J, Voigt CA, Hultman L, et al. Mo2TiAlC2: A new ordered layered ternary carbide. Scri. Mater. 2015, 101:5–7.
  • [67]Anasori B, Dahlqvist M, Halim J, Moon EJ, Lu J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 2015, 118(9):14.
  • [68]Qing-He G, Zhi-Jun X, Ling T, Xianjun Z, Guozhu J, et al. Evidence of the stability of Mo2TiAlC2 from first principles calculations and its thermodynamical and optical properties. Comput. Mat. Sci. 2016, 118:77–86.
  • [69]Fu L, Xia W. MAX phases as nanolaminate materials: Chemical composition, microstructure, synthesis, properties, and applications. Adv. Eng. Mater. 2021, 23(4).
  • [70]Liu Z, Zheng L, Sun L, Qian Y, Wang J, et al. (Cr2/3Ti1/3)3AlC2 and (Cr5/8Ti3/8)4AlC3: New MAX‐phase compounds in Ti–Cr–Al–C system. J. Am. Ceram. Soc. 2013, 97(1):67–69.
  • [71]Liu Z, Wu E, Wang J, Qian Y, Xiang H, et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Mater. 2014, 73:186–193.
  • [72]Tao Q, Dahlqvist M, Lu J, Kota S, Meshkian R, et al. Two-dimensional Mo(1.33)C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 2017, 8:14949.
  • [73]Chen LG, Dahlqvist M, Lapauw T, Tunca B, Wang F, et al. Theoretical prediction and synthesis of (Cr2/3Zr1/3)2AlC i-MAX phase. Inorg. Chem. 2018, 57(11):6237–6244.
  • [74]Dahlqvist M, Petruhins A, Lu J, Hultman L, Rosen J. Origin of chemically ordered atomic laminates i-MAX): Expanding the elemental space by a theoretical/experimental approach. Acs Nano 2018, 12(8):7761–7770.
  • [75]Lu Y, Khazaei M, Hu X, Khaledialidusti R, Sasase M, et al. Facile synthesis of Ti2AC (A = Zn, Al, In, and Ga) MAX phases by hydrogen incorporation into crystallographic voids. J. Phys. Chem. Lett. 2021, 12(46):11245–11251.
  • [76]Hug G. Electronic structures of and composition gaps among the ternary carbidesTi2MC. Physical Review B 2006, 74(18).
  • [77]Eklund P, Beckers M, Jansson U, Högberg H, Hultman L. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Films 2010, 518(8):1851–1878.
  • [78]Yu W, Jia W, Guo F, Ma Z, Zhang P, et al. The correlation between N deficiency and the mechanical properties of the Ti2AlNy MAX phase. J. Eur. Ceram. Soc. 2020, 40(6):2279–2286.
  • [79]Music D, Ahuja R, Schneider JM. Theoretical study of nitrogen vacancies in Ti4AlN3. Mater. Res. Lett. 2005, 86(3).
  • [80]Wang J, Zhou Y, Liao T, Zhang J, Lin Z. A first-principles investigation of the phase stability of Ti2AlC with Al vacancies. Scri. Mater. 2008, 58(3):227–230.
  • [81]Poulou A, Mellan TA, Finnis MW. Stability of Zr-Al-C and Ti-Al-C MAX phases: A theoretical study. Phys. Rev. Mater. 2021, 5(3).
  • [82]Hadi MA, Naqib SH, Christopoulos SRG, Chroneos A, Islam AKMA. Mechanical behavior, bonding nature and defect processes of Mo2ScAlC2: A new ordered MAX phase. J. Alloys Compd. 2017, 724:1167–1175.
  • [83]Hadi MA, Roknuzzaman M, Chroneos A, Naqib SH, Islam AKMA, et al. Elastic and thermodynamic properties of new (Zr3-xTix)AlC2 MAX-phase solid solutions. Comput. Mat. Sci. 2017, 137:318–326.
  • [84]Wang XH, Zhou YC. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J. Mater. Sci. Technol. 2010, 26(5):385–416.
  • [85]Ouadha I, Rached H, Azzouz-Rached A, Reggad A, Rached D. Study of the structural, mechanical and thermodynamic properties of the new MAX phase compounds (Zr1-xTix)3AlC2. Comput. Condens. Matter 2020, 23.
  • [86]Azzouz-Rached A, Rached H, Ouadha I, Rached D, Reggad A. The Vanadium-doping effect on physical properties of the Zr2AlC MAX phase compound. Mater. Chem. Phys. 2021, 260:124189.
  • [87]Hug G, Fries E. Full-potential electronic structure of Ti2AlC and Ti2AlN. Phys. Rev. B 2002, 65(11):113101.
  • [88]Barsoum MW, Farber L. Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. Science 1999, 284(5416):937–939.
  • [89]El-Raghy T, Barsoum MW. Growing metallic whiskers: Alternative interpretation. Science 1999, 285(5432):1357–1357.
  • [90]Liu Y, Lu C, Zhang P, Yu J, Zhang Y, et al. Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics. Acta Mater. 2020, 185:433–440.
  • [91]Liu Y, Zhang P, Yu J, Chen J, Zhang Y, et al. Confining effect of oxide film on tin whisker growth. J. Mater. Sci. Technol. 2019, 35(8):1735–1739.
  • [92]Zhang Q, Tian Z, Zhang P, Zhang Y, Liu Y, et al. Rapid and massive growth of tin whisker on mechanochemically decomposed Ti2SnC. Mater. Today Commun. 2022, 31.
  • [93]Hu F, Ding P, Wu F, Zhang P, Zheng W, et al. Novel cable‐like tin@carbon whiskers derived from the Ti2SnC MAX phase for ultra‐wideband electromagnetic wave absorption. Carbon Energy 2024, 6(12).
  • [94]Tang H, Yan B, Zhang P, Yin X, Tian Z, et al. Controlling tin whisker growth via oxygen-mediated decomposition of Ti2SnC. J. Mater. Sci. 2024, 59(5):1958–1967.
  • [95]Alam MS, Chowdhury MA, Khandaker T, Hossain MS, Islam MS, et al. Advancements in MAX phase materials: structure, properties, and novel applications. RSC Adv. 2024, 14(37):26995–27041.
  • [96]Barsoum MRaMW. MAX phases: Bridging the gap between metals and ceramics. American Ceramic Society Bulletin 2013.
  • [97]Ramzan M, Lebègue S, Ahuja R. Correlation effects in the electronic and structural properties of Cr2AlC. phys. status solidi RRL 2011, 5(3):122–124.
  • [98]Tao Q, Lu J, Dahlqvist M, Mockute A, Calder S, et al. Atomically layered and ordered rare-earth i-MAX phases: A new class of magnetic quaternary compounds. Chem. Mater. 2019, 31(7):2476–2485.
  • [99]Nie J, Liu S, Zhan X, Ao L, Li L. First-principles study of Hf/Nb/Zr-doped MAX phases Ti3AlC2 and Ti3SiC2. Phys. B: Condensed Matter 2019, 571:105–111.
  • [100]Dhakal C, Aryal S, Sakidja R, Ching W-Y. Approximate lattice thermal conductivity of MAX phases at high temperature. J. Eur. Ceram. Soc. 2015, 35(12):3203–3212.
  • [101]Hadi MA, Rayhan MA, Naqib SH, Chroneos A, Islam AKMA. Structural, elastic, thermal and lattice dynamic properties of new 321 MAX phases. Comput. Mat. Sci. 2019, 170.
  • [102]Hadi MA, Kelaidis N, Naqib SH, Chroneos A, Islam AKMA. Mechanical behaviors, lattice thermal conductivity and vibrational properties of a new MAX phase Lu2SnC. J. Phys. Chem. Solids 2019, 129:162–171.
  • [103]Li S, Sun W, Luo Y, Yu J, Sun L, et al. Pushing the limit of thermal conductivity of MAX borides and MABs. J. Mater. Sci. Technol. 2022, 97:79–88.
  • [104]Tan W, Tian Y, Zhou Y, Wei X, Zhang L, et al. Trends in mechanical, anisotropic, electronic, and thermal properties of MAX phases: a DFT study on M2SX phases. Mater. Today Commun. 2023, 35.
  • [105]Fu S, Liu Y, Zhang H, Grasso S, Hu C. Synthesis and characterization of high purity Mo2Ti2AlC3 ceramic. J. Alloys Compd. 2020, 815.
  • [106]Cabioch T, Eklund P, Mauchamp V, Jaouen M, Barsoum MW. Tailoring of the thermal expansion of Cr2(Alx,Ge1-x)C phases. J. Eur. Ceram. Soc. 2013, 33(4):897–904.
  • [107]Halim J, Chartier P, Basyuk T, Prikhna T, Caspi EN, et al. Structure and thermal expansion of (Crx,V1-x)n+1AlCn phases measured by X-ray diffraction. J. Eur. Ceram. Soc. 2017, 37(1):15–21.
  • [108]Wang XD, Chen K, Li ZQ, Ding HM, Song YJ, et al. MAX phases Hf2(SexS1-x)C (x=0-1) and their thermal expansion behaviors. J. Eur. Ceram. Soc. 2023, 43(5):1874–1879.
  • [109]Hua H, Chen X, Zhao X, Li N. Ab initio molecular dynamics study on thermal expansion of solid-solution compounds in MAX phase. Comput. Mat. Sci. 2015, 103:200–203.
  • [110]Chen H, Zhang Z, Deng J, Lin Z, Hong C, et al. Observation of low thermal expansion behavior and weak thermal anisotropy in M3A2C phases. J. Mater. Sci. Technol. 2023, 154:210–216.
  • [111]Hu C, Li F, He L, Liu M, Zhang J, et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb4AlC3. J. Am. Ceram. Soc. 2008, 91(7):2258–2263.
  • [112]Hu C, Sakka Y, Tanaka H, Nishimura T, Grasso S. Low temperature thermal expansion, high temperature electrical conductivity, and mechanical properties of Nb4AlC3 ceramic synthesized by spark plasma sintering. J. Alloys Compd. 2009, 487(1-2):675–681.
  • [113]Lane NJ, Vogel SC, Barsoum MW, Zhou Y. Temperature‐dependent crystal structures of Ti2AlN and Cr2GeC as determined from high temperature neutron diffraction. J. Am. Ceram. Soc. 2011, 94(10):3473–3479.
  • [114]Middleburgh SC, Lagerlof KPD, Grimes RW. Accommodation of excess oxygen in group II monoxides. J. Am. Ceram. Soc. 2013, 96(1):308–311.
  • [115]Zhao S, Xue J, Wang Y, Huang Q. Ab initio study of irradiation tolerance for different Mn+1AXn phases: Ti3SiC2 and Ti3AlC2. J. Appl. Phys. 2014, 115(2):023503.
  • [116]Shah SH, Bristowe PD. Point defect formation in M2AlC (M = Zr,Cr) MAX phases and their tendency to disorder and amorphize. Sci. Rep. 2017, 7(1):9667.
  • [117]Trachenko K. Understanding resistance to amorphization by radiation damage. J. Phys-Condens Mat. 2004, 16(49):R1491.
  • [118]Xu Y, Bai X, Zha X, Huang Q, He J, et al. New insight into the helium-induced damage in MAX phase Ti3AlC2 by first-principles studies. J. Chem. Phys. 2015, 143(11):114707.
  • [119]Song Q, Zhang P, Zhuang J, Ning X-J. Migrating and clustering of He atoms in Ti3SiC2: First-principles calculations. Comput. Mater. Sci. 2017, 137:327–331.
  • [120]Zhao S, Chen L, Xiao H, Huang J, Li Y, et al. Phase transformation and amorphization resistance in high-entropy MAX phase M2SnC (M=Ti, V, Nb, Zr, Hf) under in-situ ion irradiation. Acta Mater. 2022, 238:118222.
  • [121]Xiao J, Yang T, Wang C, Xue J, Wang Y. Investigations on Radiation Tolerance of Mn+1AXn Phases: Study of Ti3SiC2, Ti3AlC2, Cr2AlC, Cr2GeC, Ti2AlC, and Ti2AlN. J. Am. Ceram. Soc. 2015, 98(4):1323–1331.
  • [122]Christopoulos SRG, Kelaidis N, Chroneos A. Defect processes of M3AlC2 (M = V, Zr, Ta, Ti) MAX phases. Solid State Commun. 2017, 261:54–56.
  • [123]Singh P, Sauceda D, Arroyave R. The effect of chemical disorder on defect formation and migration in disordered max phases. Acta Mater. 2020, 184:50–58.
  • [124]Wang C, Yang T, Xiao J, Liu S, Xue J, et al. Irradiation-induced structural transitions in Ti2AlC. Acta Mater. 2015, 98:197–205.
  • [125]Wang C, Yang T, Xiao J, Liu S, Xue J, et al. Structural transitions induced by ion irradiation in V2AlC and Cr2AlC. J. Am. Ceram. Soc. 2016, 99(5):1769–1777.
  • [126]Whittle KR, Blackford MG, Aughterson RD, Moricca S, Lumpkin GR, et al. Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2. Acta Mater. 2010, 58(13):4362–4368.
  • [127]Casal N, Sordo F, Mota F, Jordanova J, García A, et al. IFMIF suitability for evaluation of fusion functional materials. J. Nucl. Mater. 2011, 417(1):1316–1320.
  • [128]Nappé JC, Monnet I, Grosseau P, Audubert F, Guilhot B, et al. Structural changes induced by heavy ion irradiation in titanium silicon carbide. J. Nucl. Mater. 2011, 409(1):53–61.
  • [129]Huang Q, Han H, Liu R, Lei G, Yan L, et al. Saturation of ion irradiation effects in MAX phase Cr2AlC. Acta Mater. 2016, 110:1–7.
  • [130]Clark DW, Zinkle SJ, Patel MK, Parish CM. High temperature ion irradiation effects in MAX phase ceramics. Acta Mater. 2016, 105:130–146.
  • [131]Bowden D, Ward J, Middleburgh S, de Moraes Shubeita S, Zapata-Solvas E, et al. The stability of irradiation-induced defects in Zr3AlC2, Nb4AlC3 and (Zr0.5,Ti0.5)3AlC2 MAX phase-based ceramics. Acta Mater. 2020, 183:24–35.
  • [132]Ward J, Middleburgh S, Topping M, Garner A, Stewart D, et al. Crystallographic evolution of MAX phases in proton irradiating environments. J. Nucl. Mater. 2018, 502:220–227.
  • [133]Huang Q, Liu R, Lei G, Huang H, Li J, et al. Irradiation resistance of MAX phases Ti3SiC2 and Ti3AlC2: Characterization and comparison. J. Nucl. Mater. 2015, 465:640–647.
  • [134]Wang C, Yang T, Tracy CL, Lu C, Zhang H, et al. Disorder in Mn+1AXn phases at the atomic scale. Nat. Commun. 2019, 10(1):622.
  • [135]Peng S, Wang Y, Yi X, Zhang Y, Liu Y, et al. Ion irradiation induced softening in Cr2AlC MAX phase. J. Alloys Compd. 2023, 939:168660.
  • [136]Liu S, Wang C, Yang T, Fang Y, Huang Q, et al. High temperature effects on irradiation damage of Ti2AlC. Nucl. Instrum. Meth. B 2017, 406:662–669.
  • [137]Gigax JG, Kennas M, Kim H, Wang T, Maier BR, et al. Radiation response of Ti2AlC MAX phase coated Zircaloy-4 for accident tolerant fuel cladding. J. Nucl. Mater. 2019, 523:26–32.
  • [138]Tallman DJ, Hoffman EN, Caspi EaN, Garcia-Diaz BL, Kohse G, et al. Effect of neutron irradiation on select MAX phases. Acta Mater. 2015, 85:132–143.
  • [139]Tallman DJ, He L, Garcia-Diaz BL, Hoffman EN, Kohse G, et al. Effect of neutron irradiation on defect evolution in Ti3SiC2 and Ti2AlC. J. Nucl. Mater. 2016, 468:194–206.
  • [140]Tallman DJ, He L, Gan J, Caspi EaN, Hoffman EN, et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121–1085 ℃ temperature range. J. Nucl. Mater. 2017, 484:120–134.
  • [141]Tallman DJ, He LF, Gan J, Caspi EN, Hoffman EN, et al. Effects of neutron irradiation of Ti3SiC2 and Ti3AlC2 in the 121-1085 ℃ temperature range. J. Nucl. Mater. 2017, 484:120–134.
  • [142]Guo X-J, Bao W, Wang X-G, Lu Y, Zhu C, et al. Restrained diffusional transformation in high entropy (TiZrVNbTa)2AlC ceramic under He ions irradiation. Scr. Mater. 2024, 245:116057.
  • [143]Xiao H, Zhao S, Zhang J, Zhao S, Li Y, et al. Distinct amorphization resistance in high-entropy MAX-phases (Ti, M)2AlC (M=Nb, Ta, V, Zr) under in situ irradiation. npj Comput. Mater. 2024, 10(1):196.
  • [144]Li Y, Zhao S, Wu Z. Uncovering the effects of chemical disorder on the irradiation resistance of high-entropy carbide ceramics. Acta Mater. 2024, 277:120187.
  • [145]Champagne A, Chaix-Pluchery O, Ouisse T, Pinek D, Gélard I, et al. First-order Raman scattering of rare-earth containing i-MAX single crystals (Mo2/3RE1/3)2AlC(RE=Nd,Gd,Dy,Ho,Er). Phys. Rev. Mater. 2019, 3(5):053609.
  • [146]Champagne A, Ricci F, Barbier M, Ouisse T, Magnin D, et al. Insights into the elastic properties of RE-i-MAX phases and their potential exfoliation into two-dimensional RE-i-MXenes. Phys. Rev. Mater. 2020, 4(1):013604.