Review
Open Access
Review on path planning for obstacle avoidance oriented to micro-/nanorobots
1 School of Mechanical and Electrical Engineering, Anhui University of Science and Technology, Huainan, China
2 Department of Industrial and Systems Engineering, Hong Kong Polytechnic University, Hong Kong, China
Abstract

Path planning algorithms are indispensable for controlling micro-/nanorobots through complex and unknown environments in the biomedical and medical fields. With the tasks performed becoming more complex, higher-quality paths are required to avoid obstacles for ensuring the safe and efficient movement of micro-/nanorobots. A comparative analysis of path planning algorithms is conducted to elucidate the algorithm’s application and optimization for different environments. According to the environment modeling approach, existing path planning algorithms are classified into searching, sampling, and dynamic aspects. Searching path planning algorithms directly retrieve the global path possessing minimum cost from the modeled static waypoints. Sampling path planning algorithms employ randomly sampled waypoints within the target space, which eliminates the necessity for environmental modeling. Dynamic path planning algorithms utilize local paths to regulate the motion of micro-/nanorobots in real time. Deep learning networks based on big data will become an important research direction for the control and navigation of micro-/nanorobots. The advantages and limitations of path planning algorithms in varied spatial contexts are elucidated through detailed examples and descriptions, providing a comprehensive understanding of performance and applicability. This review underscores recent advancements in this emerging domain and stands as a testament to the dynamic landscape of micro-/nanorobotics and the continual pursuit of superior motion control solutions.

Keywords

biomedicine; micro-/nanorobot; obstacle avoidance; path planning

Preview
References
  • [1] Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in Micro-/Nanorobotics: Materials Development, Actuation, Localization, and System Integration for Biomedical Applications. Adv. Mater. 2021, 33(4):2002047.
  • [2]Li Z, Wang K, Hou C, Li C, Zhang F, nullnull et al. Self-Sensing Intelligent Microrobots for Noninvasive and Wireless Monitoring Systems. Microsyst. Nanoeng. 2023, 9(1):10
  • [3]Wang Q, Zhang L. External Power-Driven Microrobotic Swarm: From Fundamental Understanding to Imaging-Guided Delivery. ACS Nano 2021, 15(1):149–174.
  • [4]Wang B, Chan KF, Yu J, Wang Q, Yang L, nullnull et al. Reconfigurable Swarms of Ferromagnetic Colloids for Enhanced Local Hyperthermia. Adv. Funct. Mater. 2018, 28(25):1705701.
  • [5]Zhang X, Chen G, Fu X, Wang Y, Zhao Y. Magneto-Responsive Microneedle Robots for Intestinal Macromolecule Delivery. Adv. Mater. 2021, 33(44):2104932.
  • [6]Wang Q, Wang Q, Ning Z, Chan K F, Jiang J, et al. Tracking and Navigation of a Microswarm under Laser Speckle Contrast Imaging for Targeted Delivery. Sci. Robot. 2024, 9(87): eadh1978.
  • [7]An X, Xu Z, Fang K, Wang Q. Model-Free Control of Magnetic Microrobotic Swarm for On-Demand Pattern Spreading. IEEE Robot. Autom. Lett. 2024, 9(4):3187–3194.
  • [8] Zhou H, Mayorga-Martinez C C, Pané S, Zhang L, Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021, 121(8):4999–5041.
  • [9] Sun M, Tian C, Mao L, Meng X, Shen X,null et al. Reconfigurable Magnetic Slime Robot: Deformation, Adaptability, and Multifunction. Adv. Funct. Mater. 2022, 32(26):2112508.
  • [10] Chen S, Cao Y, Sarparast M, Yuan H, Dong L,null et al. Soft Crawling Robots: Design, Actuation, and Locomotion. Adv. Mater. Technol. 2020, 5(2):1900837.
  • [11] Zhao J, Xin C, Zhu J, Xia N, Hao B,null et al. Insect-Scale Biped Robots Based on Asymmetrical Friction Effect Induced by Magnetic Torque. Adv. Mater. 2024, 36(24):2312655.
  • [12] Wang B, Chan KF, Yuan K, Wang Q, Xia X,null et al. Endoscopy-Assisted Magnetic Navigation of Biohybrid Soft Microrobots with Rapid Endoluminal Delivery and Imaging. Sci. Robot. 2021, 6(52):eabd2813.
  • [13] Yang L, Jiang J, Gao X, Wang Q, Dou Q,null et al. Autonomous Environment-Adaptive Microrobot Swarm Navigation Enabled by Deep Learning-Based Real-Time Distribution Planning. Nat. Mach. Intell. 2022, 4(5):480–493.
  • [14] Zheng Z, Wang H, Dong L, Shi Q, Li J,null et al. Ionic Shape-Morphing MicroroboticnullEnd-Effectors for Environmentally Adaptive Targeting, Releasing, And Sampling. Nat. Commun. 2021, 12(1):411.
  • [15] Abbasi S A, Ahmed A, Noh S, Gharamaleki N L, Kim S,null et al. Autonomous 3D Positional Control of a Magnetic Microrobot using Reinforcement Learning. Nat. Mach. Intell. 2024, 6(1):92–105.
  • [16] Nauber R, Goudu S R, Goeckenjan M, Bornhäuser M, Ribeiro C,null et al. Medical Microrobots in Reproductive Medicine from The Bench to The Clinic. Nat. Commun. 2023, 14(1):728.
  • [17] Lim S H, Sohn S W, Lee H, Choi D, Jang E,nullnull et al. Analysis and Evaluation of Path Planning Algorithms for Autonomous Driving of Electromagnetically Actuated Microrobot. Int. J. Control. Autom. Syst. 2020, 18(11):2943–2954.
  • [18] Yang Z, Yang L, Zhang L. 3-D Visual Servoing of Magnetic Miniature Swimmers Using Parallel Mobile Coils. IEEE Trans. Med. Robot. Bionics 2020, 2(4):608–6
  • [19] Wei T, Liu J, Li D, Chen S, Zhang Y,null et al. Development of Magnet-Driven andnullImage-Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy. Small 2020, 16(41):1906908.
  • [20] Li T, Yang Y, Fu X, Sun Z, Li Y,null et al. Visual Servo Control for Workspace Navigation of Nanorobot End-Effector Inside SEM. IEEE Trans. Autom. Sci. Eng. 2023, 21(3):3472–3482.
  • [21] Ning Y, Li T, Yao C, Du W, Zhang Y. HMS-RRT: A Novel Hybrid Multi-Strategy Rapidly- Exploring Random Tree Algorithm for Multi-Robot Collaborative Exploration in Unknown Environments. Expert Syst. Appl. 2024, 247:123238.
  • [22] Kukreja N, Sharma V K. Optimal Path Planning of Mobile Nanobots Navigation Control in Human Physiological Systems Using Advanced Soft Computing Technique. Mater. Today Proc. 2021, 45:3426–3430.
  • [23] Yang L, Jiang J, Ji F, Li Y, Yung K L,null et al. Machine Learning for Micro-and Nanorobots. Nat. Mach. Intell. 2024, 6(6):605–618.
  • [24] Yang X, Zhu W L, Zhu Z, Zhu L M. Design, Assessment, and Trajectory Control of a Novel Decoupled Robotic Nanomanipulator. IEEE/ASME Trans. Mechatronics 2022, 27(5):3999–4010.
  • [25] Li Y, Huo Y, Chu X, Yang L. Automated Magnetic Microrobot Control: From Mathematical Modeling to Machine Learning. Mathematics 2024, 12(14):2180.
  • [26] Yasa I C, Ceylan H, Bozuyuk U, Wild A M, Sitti M. Elucidating. The Interaction Dynamics Between Microswimmer Body and Immune System for Medical Microrobots. Sci. Robot. 2020, 5(43):eaaz3867.
  • [27] Liu Y, Chen H, Zou Q, Du X, Wang Y,null et al. Automatic Navigation of Microswarms for Dynamic Obstacle Avoidance. IEEE Trans. Robot. 2023, 39(4):2770–2785.
  • [28] Wang Q, Chan K F, Schweizer K, Du X, Jin D,null et al. Ultrasound Doppler-GuidednullReal-Time Navigation of a Magnetic Microswarm for Active Endovascular Delivery. Sci. Adv. 2021, 7(9):eabe5914.
  • [29] Yang L, Yu J, Yang S, Wang B, Nelson B J,null et al. A Survey on Swarm Microrobotics. IEEE Trans. Robot. 2022, 38(3):1531–1551.
  • [30] Yang L, Zhang Y, Wang Q, Chan K F, Zhang L. Automated Control of MagneticSpore-Based Microrobot Using Fluorescence Imaging for Targeted Delivery With Cellular Resolution. IEEE Trans. Autom. Sci. Eng. 2020, 17(1):490–501.
  • [31] Zou Q, Liu X, Yu J. Automatic Navigation of a Microrobotic Swarm for Tracking Multiple Mobile Targets. IEEE Robot. Autom. Lett. 2024, 9(10):8858–8865.
  • [32] Wang Q, Du X, Jin D, Zhang L. Real-Time Ultrasound Doppler Tracking and Autonomous Navigation of a Miniature Helical Robot for Accelerating Thrombolysis in Dynamic Blood Flow. ACS Nano 2022, 16(1):604–616.
  • [33]Gu C, Feng A, Wang G, Liu X. Robot Path Planning of Improved Adaptive Ant Colony System Algorithm Based on Dijkstra. J. Robot. 2022, 2022(1):9229155.
  • [34]Liu Y, Wang H, Wu X, Qu J, Liu X, et al. Autonomous Navigation of Magnetic Microrobots With Improved Planning and Control in Complex Environments. IEEE Trans. Autom. Sci. Eng. 2024, 777–782.
  • [35]Salehi A, Hosseinpour S, Tabatabaei N, Soltani Firouz M, Yu T. Intelligent Navigation of a Magnetic Microrobot with Model-Free Deep Reinforcement Learning in aReal-World Environment. Micromachines 2024, 15(1):112.
  • [36] Tang X, Li Y, Liu X, Liu D, Chen Z,null et al. Vision-based Automated Control of Magnetic Microrobots. Micromachines 2022, 13(2):337.
  • [37] Salehizadeh M, Diller E D. Path Planning and Tracking for an UnderactuatednullTwo-Microrobot System. IEEE Robot. Autom. Lett. 2021, 6(2):2674–2681.
  • [38] Gu Z, Zhu R, Shen T, Dou L, Liu H,null et al. Autonomous Nanorobots with Powerful Thrust Under Dry Solid-Contact Conditions by Photothermal Shock. Nat. Commun. 2023, 14(1):7663.
  • [39] Shi S, Yan Y, Xiong J, Cheang U K, Yao X,nullnull et al. Nanorobots-assisted natural computation for multifocal tumor sensitization and targeting. IEEE Trans. Nanobiosci. 2020, 20(2):154–165.
  • [40] Zheng L, Jia Y, Dong D, Lam W, Li D,null et al. 3D Navigation Control of Untethered Magnetic Microrobot in Centimeter-Scale Workspace Based on Field-of-View Tracking Scheme. IEEE Trans. Robot. 2021, 38(3):1583–1598.
  • [41] Liu S, Watterson M, Mohta K, Sun K, Bhattacharya S,null et al. Planning Dynamically Feasible Trajectories for Quadrotors Using Safe Flight Corridors in 3-D Complex Environments. IEEE Robot. Autom. Lett. 2017, 2(3):1688–1695.
  • [42] Huang C M, Hsu S H. Efficient Path Planning for a Microrobot Passing through Environments with Narrow Passages. Micromachines 2022, 13(11):1935.
  • [43] Han C, Li B. Mobile Robot Path Planning Based on Improved A* Algorithm. In 2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, December 8–10, 2023, pp. 672–676.
  • [44] Bijli M K, Verma P, Singh A P. A Systematic Review on The Potency of Swarm Intelligent Nanorobots in The Medical Field. Swarm Evol. Comput. 2024, 86:101524.
  • [45] Dijkstra E W. Some theorems on spanning subtrees of a graph. Mathematics 1960, 22(2):196–199.
  • [46] Kim Y, Zhao X. Magnetic Soft Materials and Robots. Chem. Rev. 2022, 122(5):5317–5364.
  • [47] Li T, Chang X, Wu Z, Li J, Shao G,null et al. Autonomous Collision-Free Navigation of Microvehicles in Complex and Dynamically Changing Environments. ACS Nano 2017, 11(9):9268–9275.
  • [48] Meng K, Jia Y, Yang H, Niu F, Wang Y,null et al. Motion Planning and Robust Control for the Endovascular Navigation of a Microrobot. IEEE Trans. Ind. Inform. 2020, 16(7):4557–4566.
  • [49] Mobadersany P, Khanmohammadi S, Ghaemi S. A Fuzzy Multi-Stage Path-Planning Method for a Robot in a Dynamic Environment With Unknown Moving Obstacles. Robotica 2015, 33(9):1869–1885.
  • [50] Vincent C, Yassine H, Philippe L. Trajectory Planning for Micromanipulation with a Nonredundant Digital Microrobot: Shortest Path Algorithm Optimization with anullHyper-cube Graph Representation. J. Mech. Robot. 2016, 8(2):021013.
  • [51] Zhou P, Xie Z, Zhou W, Tan Z. A Heuristic Integrated Scheduling Algorithm Based on Improved Dijkstra Algorithm. Electronics 2023, 12(20):4189.
  • [52] Hart P E, Nilsson N J, Raphael B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4(2):100–107.
  • [53] Yang Z, Yang L, Zhang L. Autonomous Navigation of Magnetic Microrobots in a Large Workspace Using Mobile-Coil System. IEEE/ASME Trans. Mechatronics 2021, 26(6):3163–3174.
  • [54] Huan Z, Ma W, Wang J, Wu F. Path Planning and Optimization for Micro-Robot in a Vessel-Mimic Environment. Front. Neurorobot.nullnull 2022, 16:923348.
  • [55] Fan X, Sun M, Lin Z, Song J, He Q,null et al. Automated Noncontact Micromanipulation Using Magnetic Swimming Microrobots. IEEE Trans. Nanotechnol. 2018 17(4):666–669.
  • [56] Mora-Aquino G, Rodríguez-Morales Á L, López-Huerta F, Delgado-Alvarado E,Elvira-Hernández E A,null et al. Recent advances in bioinspired walking microbots: Design, manufacturing, and challenges. Sensors Actuators A: Phys. 2024, 372:115321.
  • [57] Dong D, Xing L, Zheng Y, Jia L, Sun D. Automated 3-D Electromagnetic Manipulation of Microrobot With a Path Planner and a Cascaded Controller. IEEE Trans. Control Syst. Technol. 2022, 30(6):2672–2680.
  • [58] Huang T Y, Gu H, Nelson B J. Increasingly Intelligent Micromachines. Annu. Rev. Control Robot. Auton. Syst. 2022, 5(1):279–310.
  • [59] Du X, Zhang M, Yu J, Yang L, Chiu P W Y,null et al. Design and Real-Time Optimization for a Magnetic Actuation System With Enhanced Flexibility. IEEE/ASME Trans. Mechatronics 2021, 26(3):1524–1535.
  • [60] Jiang J, Yang L, Hao B, Xu T, Wu X,null et al. Automated Microrobotic Manipulation using Reconfigurable Magnetic Microswarms. IEEE Trans. Robot. 2024, 40:3676–3694.
  • [61] Wang Q, Yang L, Zhang L. Micromanipulation Using Reconfigurable Self-Assembled Magnetic Droplets With Needle Guidance. IEEE Trans. Autom. Sci. Eng. 2022, 19(2):759–771.
  • [62] Xie H, Fan X, Sun M, Lin Z, He Q,null et al. Programmable Generation and Motion Control of a Snakelike Magnetic Microrobot Swarm. IEEE/ASME Trans. Mechatronics 2019, 24(3):902–912.
  • [63] Cao H, Xing L, Mo H, Li D, Sun D. Image-Guided Corridor-Based Motion Planning and Magnetic Control of Microrotor in Dynamic Environments. IEEE/ASME Trans. Mechatronics 2022, 27(6):5415–5426.
  • [64] Zheng L, Yu W, Li G, Qin G, Luo Y. Particle Swarm Algorithm Path-Planning Method for Mobile Robots Based on Artificial Potential Fields. Sensors 2023, 23(13):6082.
  • [65] Zhong S, Hou Y, Shi Q, Li Y, Huang H W,null et al. Spatial Constraint-Based Navigation and Emergency Replanning Adaptive Control for Magnetic Helical Microrobots in Dynamic Environments. IEEE Trans. Autom. Sci. Eng. 2024, 21(4):7180–7189.
  • [66] Kingston Z, Moll M, Kavraki L E. Sampling-Based Methods for Motion Planning with Constraints. Annu. Rev. Control Robot. Auton. Syst. 2018, 1(1):159–185.
  • [67] Yang Y, Huang T, Wang T, Yang W, Chen H,null et al. Sampling-Efficient Path Planning and Improved Actor-Critic-Based Obstacle Avoidance for Autonomous Robots. Sci. China Inf. Sci. 2024, 67(5):1–18.
  • [68] Liu Y, Hou Z, Qu J, Liu X, Fan Q. Optimized RRT Planning With CMA-ES for Autonomous Navigation of Magnetic Microrobots in Complex Environments. IEEE/ASME Trans. Mechatronics 2024, 1–10.
  • [69] Kavraki L E, Svestka P, Latombe J C, Overmars M H. Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE Trans. Robot. Autom. 1996, 12(4):566–580.
  • [70] Dey U, Sen S, Kumar C S, Jacob C. Path Planning of Micromanipulators Inside an SEM and 3D Nanomanipulation of CNTs for Nanodevice Construction. Mechatronics 2024, 101:103196.
  • [71] LaValle S. From Dynamic Programming to RRTs: Algorithmic Design of Feasible Trajectories.In Control Problems in Robotics, Heidelberg: Springer, 2003, pp. 19–37.
  • [72] Liu J, Xu T, Yang SX, Wu X. Navigation and Visual Feedback Control for Magnetically Driven Helical Miniature Swimmers. IEEE Trans. Ind. Inform. 2020, 16(1):477–487.
  • [73] Huang C, Xu T, Yu H, Wu X. A Novel H-Shaped Soft Magnetic Microrobot for Automatic Manipulation in Dynamic Environments. IEEE Trans. Autom. Sci. Eng. 2024, 1–11.
  • [74] Fan Q, Cui G, Zhao Z, Shen J. Obstacle Avoidance for Microrobots in Simulated Vascular Environment Based on Combined Path Planning. IEEE Robot. Autom. Lett. 2022, 7(4):9794–9801.
  • [75] Liu J, Wu X, Huang C, Manamanchaiyaporn L, Shang W,null et al. 3-D Autonomous Manipulation System of Helical Microswimmers With Online Compensation Update. IEEE Trans. Autom. Sci. Eng. 2021, 18(3):1380–1391.
  • [76] Cui X, Wang C, Xiong Y, Mei L, Wu S. More Quickly-RRT*: Improved Quick Rapidly- exploring Random Tree Star algorithm based on optimized sampling point with better initial solution and convergence rate. Eng. Appl. Artif. Intell. 2024, 133:108246.
  • [77] Zou Q, Du X, Liu Y, Chen H, Wang Y,null et al. Dynamic Path Planning and Motion Control of Microrobotic Swarms for Mobile Target Tracking. IEEE Trans. Autom. Sci. Eng. 2023, 20(4):2454–2468.
  • [78] Sun L, Chen Q, Zheng M, Ning X, Gupta D,null et al. Energy-efficient Online Continual Learning for Time Series Classification in Nanorobot-based Smart Health. IEEE J. Biomed. Health Inform. 2023, 1–9
  • [79] Wang Q, Yang L, Yu J, Chiu P W Y, Zheng Y P,null et al. Real-Time Magnetic Navigation of a Rotating Colloidal Microswarm Under Ultrasound Guidance. IEEE Trans. Biomed. Eng. 2020, 67(12):3403–3412.
  • [80] Zhang Y, Zhang L, Yang L, Vong C I, Chan K F,null et al. Real-Time Tracking of Fluorescent Magnetic Spore-Based Microrobots for Remote Detection of C.diff Toxins. Sci. Adv. 2019, 5(1):eaau9650.
  • [81] Yu J, Yang L, Du X, Chen H, Xu T,null et al. Adaptive Pattern and Motion Control of Magnetic Microrobotic Swarms. IEEE Trans. Robot. 2022, 38(3):1552–1570.
  • [82] Leinen P, Esders M, Schütt K T, Wagner C, Müller K R,null et al. Autonomous Robotic Nanofabrication with Reinforcement Learning. Sci. Adv. 2024, 6(36): eabb6987.
  • [83] Fox D, Burgard W, Thrun S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Autom. Mag. 1997, 4(1):23–33.
  • [84] Kim H, Cheang U K, Kim M J. Autonomous Dynamic Obstacle Avoidance for Bacteria-Powered Microrobots (Bpms) with Modified Vector Field Histogram. PloS one 2017, 12(10):e0185744.
  • [85] Pandav P, Ren J. A Data-Driven Approach to Motion Planning and Optimal Control of Medical Nanorobots with Dynamic Window Approach. IFAC-PapersOnLine 2023, 56(3):583–588.
  • [86] Zeng D, Chen H, Yu Y, Hu Y, Deng Z,null et al. Microrobot Path Planning Based on the Multi-Module DWA Method in Crossing Dense Obstacle Scenario. Micromachines 2023, 14(6):1181.
  • [87] Yu S, Cai Y, Wu Z, He Q. Recent Progress on Motion Control of Swimming Micro/Nanorobots. View 2021, 2(5):20200113.
  • [88] Yang Y, Bevan M A, Li B. Micro/nano motor navigation and localization via deep reinforcement learning. Adv. Theory Simul. 2020,3(6):2000034.
  • [89] Tariverdi A, Côté-Allard U, Mathiassen K, Elle O J, Kalvøy H,null et al. Reinforcement Learning-Based Switching Controller for a Milliscale Robot in a Constrained Environment. IEEE Trans. Autom. Sci. Eng. 2024, 21(2):2000–2016.
  • [90] Li X, Wu J, Song J, Yu K. Informed Sampling-Based Motion Planning for Manipulating Multiple Micro Agents Using Global External Electric Fields. IEEE Trans. Autom. Sci. Eng. 2022, 19(3):1422–1433.
  • [91] Nawaz F, Ornik M. Multiagent, Multitarget Path Planning in Markov Decision Processes. IEEE Trans. Autom. Control 2023, 68(12):7560–7574.
  • [92] Tabrizi S P H P, Reza A, Jameii S M. Enhanced Path Planning for Automated Nanites Drug Delivery Based on Reinforcement Learning and Polymorphic Improved Ant Colony Optimization. J. Supercomput. 2021, 77(7):6714–6733.
  • [93] Wang Q, Xiang N, Lang J, Wang B, Jin D,null et al. Reconfigurable Liquid-Bodied Miniature Machines: Magnetic Control and Microrobotic Applications. Adv. Intell. Syst. 2024, 6:2300108.
  • [94] Wang Q, Zhang J, Yu J, Lang J, Lyu Z,nullnull et al. Untethered Small-Scale Machines for Microrobotic Manipulation: From Individual and Multiple to Collective Machines. ACS Nano 2023, 17(14):13081–13109
  • [95] Botros K, Alkhatib M, Folio D, Ferreira A. USMicroMagSet: Using Deep Learning Analysis to Benchmark the Performance of Microrobots in Ultrasound Images. IEEE Robot. Autom. Lett. 2023, 8(6):3254–3261.
  • [96] Yang Y, Bevan M A, Li B. Efficient Navigation of Colloidal Robots in an Unknown Environment via Deep Reinforcement Learning. Adv. Intell. Syst. 2020, 2(1):1900106.
  • [97] Itani M, Chen T, Yoshioka T, Gollakota S. Creating Speech Zones with Self-Distributing Acoustic Swarms. Nat. Commun. 2023, 14(1):5684.
  • [98] Jiang J, Yang L, Zhang L. DQN-based on-line Path Planning Method for Automatic Navigation of Miniature Robots. In 2023 IEEE Int. Conf. Robot. Autom. (ICRA), London, United Kingdom, May 29–June 02, 2023, pp. 5407–5413.